Cargando…
Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling
We previously reported the effects of the total flavonoids (TFs) from Rosa laevigata Michx fruit against carbon tetrachloride-induced liver damage, non-alcoholic fatty liver disease, and liver ischemia-reperfusion injury. However, there have been no papers reporting the role of R. laevigata TFs agai...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025249/ https://www.ncbi.nlm.nih.gov/pubmed/29890650 http://dx.doi.org/10.3390/foods7060088 |
_version_ | 1783336236673400832 |
---|---|
author | Dong, Lile Han, Xu Tao, Xufeng Xu, Lina Xu, Youwei Fang, Linlin Yin, Lianhong Qi, Yan Li, Hua Peng, Jinyong |
author_facet | Dong, Lile Han, Xu Tao, Xufeng Xu, Lina Xu, Youwei Fang, Linlin Yin, Lianhong Qi, Yan Li, Hua Peng, Jinyong |
author_sort | Dong, Lile |
collection | PubMed |
description | We previously reported the effects of the total flavonoids (TFs) from Rosa laevigata Michx fruit against carbon tetrachloride-induced liver damage, non-alcoholic fatty liver disease, and liver ischemia-reperfusion injury. However, there have been no papers reporting the role of R. laevigata TFs against lipopolysaccharide (LPS)-induced liver injury. In this paper, liver injury in mice was induced by LPS, and R. Laevigata extract was intragastrically administered to the mice for 7 days. Biochemical parameters in serum and liver tissue were examined, and pathological changes were observed by transmission electron microscopy, hematoxylin and eosin (H&E) and Oil Red O staining. The results showed that the TFs markedly reduced serum ALT (alanine transferase), AST (aspartate transaminase), TG (total triglyceride), and TC (total cholesterol) levels and relative liver weights and improved liver pathological changes. In addition, the TFs markedly decreased tissue MDA (malondialdehyde) level and increased the levels of SOD (superoxide dismutase) and GSH-Px (glutathione peroxidase). A mechanistic study showed that the TFs significantly increased the expression levels of Nrf2 (nuclear erythroid factor2-related factor 2), HO-1 (heme oxygenase-1), NQO1 (NAD(P)H dehydrogenase (quinone 1), GCLC (glutamate-cysteine ligase catalytic subunit), and GCLM (glutamate-cysteine ligase regulatory subunit) and decreased Keap1 (Kelch-like ECH-associated protein 1) level by activating FXR (farnesoid X receptor) against oxidative stress. Furthermore, the TFs markedly suppressed the nuclear translocation of NF-κB (nuclear factor-kappa B) and subsequently decreased the expression levels of IL (interleukin)-1β, IL-6, HMGB-1 (high -mobility group box 1), and COX-2 (cyclooxygenase-2) by activating FXR and FOXO3a (forkhead box O3) against inflammation. Besides, the TFs obviously reduced the expression levels of SREBP-1c (sterol regulatory element-binding proteins-1c), ACC1 (acetyl-CoA carboxylase-1), FASN (fatty acid synthase), and SCD1 (stearoyl-coenzyme A desaturase 1), and improved CPT1 (carnitine palmitoyltransferase 1) level by activating FXR to regulate lipid metabolism. Our results suggest that TFs exhibited protective effect against LPS-induced liver injury by altering FXR-mediated oxidative stress, inflammation, and lipid metabolism, and should be developed as an effective food and healthcare product for the therapy of liver injury in the future. |
format | Online Article Text |
id | pubmed-6025249 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60252492018-07-09 Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling Dong, Lile Han, Xu Tao, Xufeng Xu, Lina Xu, Youwei Fang, Linlin Yin, Lianhong Qi, Yan Li, Hua Peng, Jinyong Foods Article We previously reported the effects of the total flavonoids (TFs) from Rosa laevigata Michx fruit against carbon tetrachloride-induced liver damage, non-alcoholic fatty liver disease, and liver ischemia-reperfusion injury. However, there have been no papers reporting the role of R. laevigata TFs against lipopolysaccharide (LPS)-induced liver injury. In this paper, liver injury in mice was induced by LPS, and R. Laevigata extract was intragastrically administered to the mice for 7 days. Biochemical parameters in serum and liver tissue were examined, and pathological changes were observed by transmission electron microscopy, hematoxylin and eosin (H&E) and Oil Red O staining. The results showed that the TFs markedly reduced serum ALT (alanine transferase), AST (aspartate transaminase), TG (total triglyceride), and TC (total cholesterol) levels and relative liver weights and improved liver pathological changes. In addition, the TFs markedly decreased tissue MDA (malondialdehyde) level and increased the levels of SOD (superoxide dismutase) and GSH-Px (glutathione peroxidase). A mechanistic study showed that the TFs significantly increased the expression levels of Nrf2 (nuclear erythroid factor2-related factor 2), HO-1 (heme oxygenase-1), NQO1 (NAD(P)H dehydrogenase (quinone 1), GCLC (glutamate-cysteine ligase catalytic subunit), and GCLM (glutamate-cysteine ligase regulatory subunit) and decreased Keap1 (Kelch-like ECH-associated protein 1) level by activating FXR (farnesoid X receptor) against oxidative stress. Furthermore, the TFs markedly suppressed the nuclear translocation of NF-κB (nuclear factor-kappa B) and subsequently decreased the expression levels of IL (interleukin)-1β, IL-6, HMGB-1 (high -mobility group box 1), and COX-2 (cyclooxygenase-2) by activating FXR and FOXO3a (forkhead box O3) against inflammation. Besides, the TFs obviously reduced the expression levels of SREBP-1c (sterol regulatory element-binding proteins-1c), ACC1 (acetyl-CoA carboxylase-1), FASN (fatty acid synthase), and SCD1 (stearoyl-coenzyme A desaturase 1), and improved CPT1 (carnitine palmitoyltransferase 1) level by activating FXR to regulate lipid metabolism. Our results suggest that TFs exhibited protective effect against LPS-induced liver injury by altering FXR-mediated oxidative stress, inflammation, and lipid metabolism, and should be developed as an effective food and healthcare product for the therapy of liver injury in the future. MDPI 2018-06-08 /pmc/articles/PMC6025249/ /pubmed/29890650 http://dx.doi.org/10.3390/foods7060088 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dong, Lile Han, Xu Tao, Xufeng Xu, Lina Xu, Youwei Fang, Linlin Yin, Lianhong Qi, Yan Li, Hua Peng, Jinyong Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling |
title | Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling |
title_full | Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling |
title_fullStr | Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling |
title_full_unstemmed | Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling |
title_short | Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling |
title_sort | protection by the total flavonoids from rosa laevigata michx fruit against lipopolysaccharide-induced liver injury in mice via modulation of fxr signaling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025249/ https://www.ncbi.nlm.nih.gov/pubmed/29890650 http://dx.doi.org/10.3390/foods7060088 |
work_keys_str_mv | AT donglile protectionbythetotalflavonoidsfromrosalaevigatamichxfruitagainstlipopolysaccharideinducedliverinjuryinmiceviamodulationoffxrsignaling AT hanxu protectionbythetotalflavonoidsfromrosalaevigatamichxfruitagainstlipopolysaccharideinducedliverinjuryinmiceviamodulationoffxrsignaling AT taoxufeng protectionbythetotalflavonoidsfromrosalaevigatamichxfruitagainstlipopolysaccharideinducedliverinjuryinmiceviamodulationoffxrsignaling AT xulina protectionbythetotalflavonoidsfromrosalaevigatamichxfruitagainstlipopolysaccharideinducedliverinjuryinmiceviamodulationoffxrsignaling AT xuyouwei protectionbythetotalflavonoidsfromrosalaevigatamichxfruitagainstlipopolysaccharideinducedliverinjuryinmiceviamodulationoffxrsignaling AT fanglinlin protectionbythetotalflavonoidsfromrosalaevigatamichxfruitagainstlipopolysaccharideinducedliverinjuryinmiceviamodulationoffxrsignaling AT yinlianhong protectionbythetotalflavonoidsfromrosalaevigatamichxfruitagainstlipopolysaccharideinducedliverinjuryinmiceviamodulationoffxrsignaling AT qiyan protectionbythetotalflavonoidsfromrosalaevigatamichxfruitagainstlipopolysaccharideinducedliverinjuryinmiceviamodulationoffxrsignaling AT lihua protectionbythetotalflavonoidsfromrosalaevigatamichxfruitagainstlipopolysaccharideinducedliverinjuryinmiceviamodulationoffxrsignaling AT pengjinyong protectionbythetotalflavonoidsfromrosalaevigatamichxfruitagainstlipopolysaccharideinducedliverinjuryinmiceviamodulationoffxrsignaling |