Cargando…
Eigenvector Spatial Filtering Regression Modeling of Ground PM(2.5) Concentrations Using Remotely Sensed Data
This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF) method to estimate ground PM(2.5) concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative h...
Autores principales: | Zhang, Jingyi, Li, Bin, Chen, Yumin, Chen, Meijie, Fang, Tao, Liu, Yongfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025436/ https://www.ncbi.nlm.nih.gov/pubmed/29891785 http://dx.doi.org/10.3390/ijerph15061228 |
Ejemplares similares
-
Spatial regression analysis using eigenvector spatial filtering
por: Griffith, Daniel, et al.
Publicado: (2019) -
Population flow based spatial-temporal eigenvector filtering modeling for exploring effects of health risk factors on COVID-19
por: Chen, Meijie, et al.
Publicado: (2022) -
The best of both worlds: Phylogenetic eigenvector regression and mapping
por: Diniz, José Alexandre Felizola, et al.
Publicado: (2015) -
Exploring Spatial Influence of Remotely Sensed PM(2.5) Concentration Using a Developed Deep Convolutional Neural Network Model
por: Li, Junming, et al.
Publicado: (2019) -
Comparison of Ground-Based PM(2.5) and PM(10) Concentrations in China, India, and the U.S.
por: Yang, Xingchuan, et al.
Publicado: (2018)