Cargando…
CO(2) Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Desorption Cycles
CO(2) adsorption on mesoporous silica modified with amine by double functionalization was studied. Adsorption microcalorimetry was used in order to investigate the influence of increasing the nitrogen surface density on double functionalized materials with respect to the only grafted materials. The...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025462/ https://www.ncbi.nlm.nih.gov/pubmed/29799459 http://dx.doi.org/10.3390/ma11060887 |
_version_ | 1783336285550673920 |
---|---|
author | Sánchez-Zambrano, Kléver Santiago Lima Duarte, Lairana Soares Maia, Débora Aline Vilarrasa-García, Enrique Bastos-Neto, Moisés Rodríguez-Castellón, Enrique Silva de Azevedo, Diana Cristina |
author_facet | Sánchez-Zambrano, Kléver Santiago Lima Duarte, Lairana Soares Maia, Débora Aline Vilarrasa-García, Enrique Bastos-Neto, Moisés Rodríguez-Castellón, Enrique Silva de Azevedo, Diana Cristina |
author_sort | Sánchez-Zambrano, Kléver Santiago |
collection | PubMed |
description | CO(2) adsorption on mesoporous silica modified with amine by double functionalization was studied. Adsorption microcalorimetry was used in order to investigate the influence of increasing the nitrogen surface density on double functionalized materials with respect to the only grafted materials. The distribution of sites and the rate-controlling mechanism of adsorption were evaluated. A Tian Calvet microcalorimeter coupled to a manometric setup was used to evaluate the energy distribution of adsorption sites and to calculate the thermokinetic parameters from the differential enthalpy curves. CO(2) and N(2) adsorption equilibrium isotherms at 50 and 75 °C were measured with a magnetic suspension balance, allowing for the computation of working capacity and selectivity at two temperatures. With these data, an Adsorbent Performance Indicator (API) was calculated and contrasted with other studied materials under the same conditions. The high values of API and selectivity confirmed that double functionalized mesoporous silica is a promising adsorbent for the post combustion process. The adsorption microcalorimetric study suggests a change in active sites distribution as the amine density increases. Maximum thermokinetic parameter suggests that physisorption on pores is the rate-controlling binding mechanism for the double-functionalized material. |
format | Online Article Text |
id | pubmed-6025462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60254622018-07-09 CO(2) Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Desorption Cycles Sánchez-Zambrano, Kléver Santiago Lima Duarte, Lairana Soares Maia, Débora Aline Vilarrasa-García, Enrique Bastos-Neto, Moisés Rodríguez-Castellón, Enrique Silva de Azevedo, Diana Cristina Materials (Basel) Article CO(2) adsorption on mesoporous silica modified with amine by double functionalization was studied. Adsorption microcalorimetry was used in order to investigate the influence of increasing the nitrogen surface density on double functionalized materials with respect to the only grafted materials. The distribution of sites and the rate-controlling mechanism of adsorption were evaluated. A Tian Calvet microcalorimeter coupled to a manometric setup was used to evaluate the energy distribution of adsorption sites and to calculate the thermokinetic parameters from the differential enthalpy curves. CO(2) and N(2) adsorption equilibrium isotherms at 50 and 75 °C were measured with a magnetic suspension balance, allowing for the computation of working capacity and selectivity at two temperatures. With these data, an Adsorbent Performance Indicator (API) was calculated and contrasted with other studied materials under the same conditions. The high values of API and selectivity confirmed that double functionalized mesoporous silica is a promising adsorbent for the post combustion process. The adsorption microcalorimetric study suggests a change in active sites distribution as the amine density increases. Maximum thermokinetic parameter suggests that physisorption on pores is the rate-controlling binding mechanism for the double-functionalized material. MDPI 2018-05-25 /pmc/articles/PMC6025462/ /pubmed/29799459 http://dx.doi.org/10.3390/ma11060887 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sánchez-Zambrano, Kléver Santiago Lima Duarte, Lairana Soares Maia, Débora Aline Vilarrasa-García, Enrique Bastos-Neto, Moisés Rodríguez-Castellón, Enrique Silva de Azevedo, Diana Cristina CO(2) Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Desorption Cycles |
title | CO(2) Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Desorption Cycles |
title_full | CO(2) Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Desorption Cycles |
title_fullStr | CO(2) Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Desorption Cycles |
title_full_unstemmed | CO(2) Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Desorption Cycles |
title_short | CO(2) Capture with Mesoporous Silicas Modified with Amines by Double Functionalization: Assessment of Adsorption/Desorption Cycles |
title_sort | co(2) capture with mesoporous silicas modified with amines by double functionalization: assessment of adsorption/desorption cycles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025462/ https://www.ncbi.nlm.nih.gov/pubmed/29799459 http://dx.doi.org/10.3390/ma11060887 |
work_keys_str_mv | AT sanchezzambranokleversantiago co2capturewithmesoporoussilicasmodifiedwithaminesbydoublefunctionalizationassessmentofadsorptiondesorptioncycles AT limaduartelairana co2capturewithmesoporoussilicasmodifiedwithaminesbydoublefunctionalizationassessmentofadsorptiondesorptioncycles AT soaresmaiadeboraaline co2capturewithmesoporoussilicasmodifiedwithaminesbydoublefunctionalizationassessmentofadsorptiondesorptioncycles AT vilarrasagarciaenrique co2capturewithmesoporoussilicasmodifiedwithaminesbydoublefunctionalizationassessmentofadsorptiondesorptioncycles AT bastosnetomoises co2capturewithmesoporoussilicasmodifiedwithaminesbydoublefunctionalizationassessmentofadsorptiondesorptioncycles AT rodriguezcastellonenrique co2capturewithmesoporoussilicasmodifiedwithaminesbydoublefunctionalizationassessmentofadsorptiondesorptioncycles AT silvadeazevedodianacristina co2capturewithmesoporoussilicasmodifiedwithaminesbydoublefunctionalizationassessmentofadsorptiondesorptioncycles |