Cargando…

Seebeck Coefficient of Thermocouples from Nickel-Coated Carbon Fibers: Theory and Experiment

Thermocouples made of etched and non-etched nickel-coated carbon yarn (NiCCY) were investigated. Theoretic Seebeck coefficients were compared to experimental results from measurements of generated electric voltage by these thermocouples. The etching process for making thermocouples was performed by...

Descripción completa

Detalles Bibliográficos
Autores principales: Hardianto, Hardianto, De Mey, Gilbert, Ciesielska-Wrόbel, Izabela, Hertleer, Carla, Van Langenhove, Lieva
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025552/
https://www.ncbi.nlm.nih.gov/pubmed/29848947
http://dx.doi.org/10.3390/ma11060922
Descripción
Sumario:Thermocouples made of etched and non-etched nickel-coated carbon yarn (NiCCY) were investigated. Theoretic Seebeck coefficients were compared to experimental results from measurements of generated electric voltage by these thermocouples. The etching process for making thermocouples was performed by immersion of NiCCY in the solution containing a mixture of hydrochloric acid (HCl) (37% of concentration), and hydrogen peroxide (H(2)O(2)) in three different concentrations—3%, 6%, and 10%. Thirty minutes of etching to remove Ni from NiCCY was followed by washing and drying. Next, the ability to generate electrical voltage by the thermocouples (being a junction of the etched and the non-etched NiCCY) was measured in different ranges of temperatures, both a cold junction (291.15–293.15 K) and a hot junction (293.15–325.15 K). A formula predicting the Seebeck coefficient of this thermocouple was elaborated, taking into consideration resistance values of the tested samples. It was proven that there is a good agreement between the theoretical and experimental data, especially for the yarns etched with 6% and 10% peroxide (both were mixed with HCl). The electrical resistance of non-fully etched nickel remaining on the carbon fiber surface ([Formula: see text]) can have a significant effect on the thermocouples’ characteristics.