Cargando…

Sensory information and the perception of verticality in post-stroke patients. Another point of view in sensory reweighting strategies

INTRODUCTION: Perception of verticality is highly related to balance control in human. Head-on-body tilt <60° results in the E-effect, meaning that a tilt of the perceived vertical is observed contralateral to the head tilt in the frontal plane. Furthermore, somatosensory loss also impacts the ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Saeys, Wim, Herssens, Nolan, Verwulgen, Stijn, Truijen, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025873/
https://www.ncbi.nlm.nih.gov/pubmed/29958286
http://dx.doi.org/10.1371/journal.pone.0199098
_version_ 1783336361185509376
author Saeys, Wim
Herssens, Nolan
Verwulgen, Stijn
Truijen, Steven
author_facet Saeys, Wim
Herssens, Nolan
Verwulgen, Stijn
Truijen, Steven
author_sort Saeys, Wim
collection PubMed
description INTRODUCTION: Perception of verticality is highly related to balance control in human. Head-on-body tilt <60° results in the E-effect, meaning that a tilt of the perceived vertical is observed contralateral to the head tilt in the frontal plane. Furthermore, somatosensory loss also impacts the accuracy of verticality perception. However, when several input sources are absent or biased, less options for sensory weighting and balance control occur. Therefore, this study aims to identify the E-effect and assess the effect of somatosensory loss on the extent of the E-effect. METHODS: All patients with a first stroke admitted to a Belgian rehabilitation hospital were eligible for inclusion. Patients aged above 80 with other neurological and orthopaedic impairments as well as brainstem, cerebellar or multiple lesions were excluded. In addition, patients with visuospatial neglect and pusher behaviour were also excluded as this can affect verticality perception. The Rivermead Assessment of Somatosensory Performance (RASP), the Subjective Visual (SVV) and Subjective Postural (SPV) Vertical Test were administered. RESULTS: In total, 37 patients were included in the analysis of which 24 patients completed both SVV and SPV assessment. Results show that the E-effect occurred in our sample of stroke survivors for both SVV and SPV. In addition, the presence of somatosensory loss will increase the E-effect in both SVV as SPV assessment. A significant difference in verticality perception was noted for both SVV and SPV between the group with no (SVV: 5.13°(6.92); SPV: 0.30°(1.85)) and highly severe (SVV: 10.54°(13.19); SPV: 5.96°(9.27)) sensory loss. CONCLUSIONS: The E-effect occurs in stroke subjects and increases when patients experience somatosensory loss. This suggests that the lack of available afferent information impede estimation of verticality. Therefore, stroke survivors have fewer alternative input sources as a result of impairments, leading to fewer options about sensory reweighting strategies and balance recovery after perturbations.
format Online
Article
Text
id pubmed-6025873
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-60258732018-07-06 Sensory information and the perception of verticality in post-stroke patients. Another point of view in sensory reweighting strategies Saeys, Wim Herssens, Nolan Verwulgen, Stijn Truijen, Steven PLoS One Research Article INTRODUCTION: Perception of verticality is highly related to balance control in human. Head-on-body tilt <60° results in the E-effect, meaning that a tilt of the perceived vertical is observed contralateral to the head tilt in the frontal plane. Furthermore, somatosensory loss also impacts the accuracy of verticality perception. However, when several input sources are absent or biased, less options for sensory weighting and balance control occur. Therefore, this study aims to identify the E-effect and assess the effect of somatosensory loss on the extent of the E-effect. METHODS: All patients with a first stroke admitted to a Belgian rehabilitation hospital were eligible for inclusion. Patients aged above 80 with other neurological and orthopaedic impairments as well as brainstem, cerebellar or multiple lesions were excluded. In addition, patients with visuospatial neglect and pusher behaviour were also excluded as this can affect verticality perception. The Rivermead Assessment of Somatosensory Performance (RASP), the Subjective Visual (SVV) and Subjective Postural (SPV) Vertical Test were administered. RESULTS: In total, 37 patients were included in the analysis of which 24 patients completed both SVV and SPV assessment. Results show that the E-effect occurred in our sample of stroke survivors for both SVV and SPV. In addition, the presence of somatosensory loss will increase the E-effect in both SVV as SPV assessment. A significant difference in verticality perception was noted for both SVV and SPV between the group with no (SVV: 5.13°(6.92); SPV: 0.30°(1.85)) and highly severe (SVV: 10.54°(13.19); SPV: 5.96°(9.27)) sensory loss. CONCLUSIONS: The E-effect occurs in stroke subjects and increases when patients experience somatosensory loss. This suggests that the lack of available afferent information impede estimation of verticality. Therefore, stroke survivors have fewer alternative input sources as a result of impairments, leading to fewer options about sensory reweighting strategies and balance recovery after perturbations. Public Library of Science 2018-06-29 /pmc/articles/PMC6025873/ /pubmed/29958286 http://dx.doi.org/10.1371/journal.pone.0199098 Text en © 2018 Saeys et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Saeys, Wim
Herssens, Nolan
Verwulgen, Stijn
Truijen, Steven
Sensory information and the perception of verticality in post-stroke patients. Another point of view in sensory reweighting strategies
title Sensory information and the perception of verticality in post-stroke patients. Another point of view in sensory reweighting strategies
title_full Sensory information and the perception of verticality in post-stroke patients. Another point of view in sensory reweighting strategies
title_fullStr Sensory information and the perception of verticality in post-stroke patients. Another point of view in sensory reweighting strategies
title_full_unstemmed Sensory information and the perception of verticality in post-stroke patients. Another point of view in sensory reweighting strategies
title_short Sensory information and the perception of verticality in post-stroke patients. Another point of view in sensory reweighting strategies
title_sort sensory information and the perception of verticality in post-stroke patients. another point of view in sensory reweighting strategies
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025873/
https://www.ncbi.nlm.nih.gov/pubmed/29958286
http://dx.doi.org/10.1371/journal.pone.0199098
work_keys_str_mv AT saeyswim sensoryinformationandtheperceptionofverticalityinpoststrokepatientsanotherpointofviewinsensoryreweightingstrategies
AT herssensnolan sensoryinformationandtheperceptionofverticalityinpoststrokepatientsanotherpointofviewinsensoryreweightingstrategies
AT verwulgenstijn sensoryinformationandtheperceptionofverticalityinpoststrokepatientsanotherpointofviewinsensoryreweightingstrategies
AT truijensteven sensoryinformationandtheperceptionofverticalityinpoststrokepatientsanotherpointofviewinsensoryreweightingstrategies