Cargando…

Sampling molecular conformations and dynamics in a multiuser virtual reality framework

We describe a framework for interactive molecular dynamics in a multiuser virtual reality (VR) environment, combining rigorous cloud-mounted atomistic physics simulations with commodity VR hardware, which we have made accessible to readers (see isci.itch.io/nsb-imd). It allows users to visualize and...

Descripción completa

Detalles Bibliográficos
Autores principales: O’Connor, Michael, Deeks, Helen M., Dawn, Edward, Metatla, Oussama, Roudaut, Anne, Sutton, Matthew, Thomas, Lisa May, Glowacki, Becca Rose, Sage, Rebecca, Tew, Philip, Wonnacott, Mark, Bates, Phil, Mulholland, Adrian J., Glowacki, David R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025904/
https://www.ncbi.nlm.nih.gov/pubmed/29963636
http://dx.doi.org/10.1126/sciadv.aat2731
Descripción
Sumario:We describe a framework for interactive molecular dynamics in a multiuser virtual reality (VR) environment, combining rigorous cloud-mounted atomistic physics simulations with commodity VR hardware, which we have made accessible to readers (see isci.itch.io/nsb-imd). It allows users to visualize and sample, with atomic-level precision, the structures and dynamics of complex molecular structures “on the fly” and to interact with other users in the same virtual environment. A series of controlled studies, in which participants were tasked with a range of molecular manipulation goals (threading methane through a nanotube, changing helical screw sense, and tying a protein knot), quantitatively demonstrate that users within the interactive VR environment can complete sophisticated molecular modeling tasks more quickly than they can using conventional interfaces, especially for molecular pathways and structural transitions whose conformational choreographies are intrinsically three-dimensional. This framework should accelerate progress in nanoscale molecular engineering areas including conformational mapping, drug development, synthetic biology, and catalyst design. More broadly, our findings highlight the potential of VR in scientific domains where three-dimensional dynamics matter, spanning research and education.