Cargando…
Introducing chaos behavior to kernel relevance vector machine (RVM) for four-class EEG classification
This paper addresses a chaos kernel function for the relevance vector machine (RVM) in EEG signal classification, which is an important component of Brain-Computer Interface (BCI). The novel kernel function has evolved from a chaotic system, which is inspired by the fact that human brain signals dep...
Autores principales: | Dong, Enzeng, Zhu, Guangxu, Chen, Chao, Tong, Jigang, Jiao, Yingjie, Du, Shengzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025910/ https://www.ncbi.nlm.nih.gov/pubmed/29958301 http://dx.doi.org/10.1371/journal.pone.0198786 |
Ejemplares similares
-
Analysis of Kernel Matrices via the von Neumann Entropy and Its Relation to RVM Performances
por: Belanche-Muñoz, Lluís A., et al.
Publicado: (2023) -
Introducing chaos
por: Sardar, Ziauddin
Publicado: (1999) -
A Bio Medical Waste Identification and Classification Algorithm Using Mltrp and Rvm
por: ACHUTHAN, Aravindan, et al.
Publicado: (2016) -
Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM
por: Zhang, Chaolong, et al.
Publicado: (2015) -
Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine
por: Li, Xiaoou, et al.
Publicado: (2014)