Cargando…

Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus

Recognition of Nod factors by LysM receptors is crucial for nitrogen-fixing symbiosis in most legumes. The large families of LysM receptors in legumes suggest concerted functions, yet only NFR1 and NFR5 and their closest homologs are known to be required. Here we show that an epidermal LysM receptor...

Descripción completa

Detalles Bibliográficos
Autores principales: Murakami, Eiichi, Cheng, Jeryl, Gysel, Kira, Bozsoki, Zoltan, Kawaharada, Yasuyuki, Hjuler, Christian Toftegaard, Sørensen, Kasper Kildegaard, Tao, Ke, Kelly, Simon, Venice, Francesco, Genre, Andrea, Thygesen, Mikkel Boas, de Jong, Noor, Vinther, Maria, Jensen, Dorthe Bødker, Jensen, Knud Jørgen, Blaise, Michael, Madsen, Lene Heegaard, Andersen, Kasper Røjkjær, Stougaard, Jens, Radutoiu, Simona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025957/
https://www.ncbi.nlm.nih.gov/pubmed/29957177
http://dx.doi.org/10.7554/eLife.33506
Descripción
Sumario:Recognition of Nod factors by LysM receptors is crucial for nitrogen-fixing symbiosis in most legumes. The large families of LysM receptors in legumes suggest concerted functions, yet only NFR1 and NFR5 and their closest homologs are known to be required. Here we show that an epidermal LysM receptor (NFRe), ensures robust signalling in L. japonicus. Mutants of Nfre react to Nod factors with increased calcium spiking interval, reduced transcriptional response and fewer nodules in the presence of rhizobia. NFRe has an active kinase capable of phosphorylating NFR5, which in turn, controls NFRe downstream signalling. Our findings provide evidence for a more complex Nod factor signalling mechanism than previously anticipated. The spatio-temporal interplay between Nfre and Nfr1, and their divergent signalling through distinct kinases suggests the presence of an NFRe-mediated idling state keeping the epidermal cells of the expanding root system attuned to rhizobia.