Cargando…
Harnessing synthetic lethality to predict the response to cancer treatment
While synthetic lethality (SL) holds promise in developing effective cancer therapies, SL candidates found via experimental screens often have limited translational value. Here we present a data-driven approach, ISLE (identification of clinically relevant synthetic lethality), that mines TCGA cohort...
Autores principales: | Lee, Joo Sang, Das, Avinash, Jerby-Arnon, Livnat, Arafeh, Rand, Auslander, Noam, Davidson, Matthew, McGarry, Lynn, James, Daniel, Amzallag, Arnaud, Park, Seung Gu, Cheng, Kuoyuan, Robinson, Welles, Atias, Dikla, Stossel, Chani, Buzhor, Ella, Stein, Gidi, Waterfall, Joshua J., Meltzer, Paul S., Golan, Talia, Hannenhalli, Sridhar, Gottlieb, Eyal, Benes, Cyril H., Samuels, Yardena, Shanks, Emma, Ruppin, Eytan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026173/ https://www.ncbi.nlm.nih.gov/pubmed/29959327 http://dx.doi.org/10.1038/s41467-018-04647-1 |
Ejemplares similares
-
Moving ahead on harnessing synthetic lethality to fight cancer
por: Jerby-Arnon, Livnat, et al.
Publicado: (2015) -
Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism
por: Jerby, Livnat, et al.
Publicado: (2010) -
Predicting selective drug targets in cancer through metabolic networks
por: Folger, Ori, et al.
Publicado: (2011) -
Predicting selective drug targets in cancer through metabolic networks
por: Folger, Ori, et al.
Publicado: (2011) -
Predicting selective drug targets in cancer through metabolic networks
por: Folger, Ori, et al.
Publicado: (2011)