Cargando…
Clustering huge protein sequence sets in linear time
Metagenomic datasets contain billions of protein sequences that could greatly enhance large-scale functional annotation and structure prediction. Utilizing this enormous resource would require reducing its redundancy by similarity clustering. However, clustering hundreds of millions of sequences is...
Autores principales: | Steinegger, Martin, Söding, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026198/ https://www.ncbi.nlm.nih.gov/pubmed/29959318 http://dx.doi.org/10.1038/s41467-018-04964-5 |
Ejemplares similares
-
Uniclust databases of clustered and deeply annotated protein sequences and alignments
por: Mirdita, Milot, et al.
Publicado: (2017) -
MMseqs2 desktop and local web server app for fast, interactive sequence searches
por: Mirdita, Milot, et al.
Publicado: (2019) -
kClust: fast and sensitive clustering of large protein sequence databases
por: Hauser, Maria, et al.
Publicado: (2013) -
HH-suite3 for fast remote homology detection and deep protein annotation
por: Steinegger, Martin, et al.
Publicado: (2019) -
The space charge limited current and huge linear magnetoresistance in silicon
por: Liu, Y., et al.
Publicado: (2018)