Cargando…

Protein Secondary Structure Prediction Based on Data Partition and Semi-Random Subspace Method

Protein secondary structure prediction is one of the most important and challenging problems in bioinformatics. Machine learning techniques have been applied to solve the problem and have gained substantial success in this research area. However there is still room for improvement toward the theoret...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yuming, Liu, Yihui, Cheng, Jinyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026213/
https://www.ncbi.nlm.nih.gov/pubmed/29959372
http://dx.doi.org/10.1038/s41598-018-28084-8
Descripción
Sumario:Protein secondary structure prediction is one of the most important and challenging problems in bioinformatics. Machine learning techniques have been applied to solve the problem and have gained substantial success in this research area. However there is still room for improvement toward the theoretical limit. In this paper, we present a novel method for protein secondary structure prediction based on a data partition and semi-random subspace method (PSRSM). Data partitioning is an important strategy for our method. First, the protein training dataset was partitioned into several subsets based on the length of the protein sequence. Then we trained base classifiers on the subspace data generated by the semi-random subspace method, and combined base classifiers by majority vote rule into ensemble classifiers on each subset. Multiple classifiers were trained on different subsets. These different classifiers were used to predict the secondary structures of different proteins according to the protein sequence length. Experiments are performed on 25PDB, CB513, CASP10, CASP11, CASP12, and T100 datasets, and the good performance of 86.38%, 84.53%, 85.51%, 85.89%, 85.55%, and 85.09% is achieved respectively. Experimental results showed that our method outperforms other state-of-the-art methods.