Cargando…

CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability

OBJECTIVE: The molecular diagnosis of extreme forms of obesity, in which accurate detection of both copy number variations (CNVs) and point mutations, is crucial for an optimal care of the patients and genetic counseling for their families. Whole-exome sequencing (WES) has benefited considerably thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Montagne, Louise, Derhourhi, Mehdi, Piton, Amélie, Toussaint, Bénédicte, Durand, Emmanuelle, Vaillant, Emmanuel, Thuillier, Dorothée, Gaget, Stefan, De Graeve, Franck, Rabearivelo, Iandry, Lansiaux, Amélie, Lenne, Bruno, Sukno, Sylvie, Desailloud, Rachel, Cnop, Miriam, Nicolescu, Ramona, Cohen, Lior, Zagury, Jean-François, Amouyal, Mélanie, Weill, Jacques, Muller, Jean, Sand, Olivier, Delobel, Bruno, Froguel, Philippe, Bonnefond, Amélie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026315/
https://www.ncbi.nlm.nih.gov/pubmed/29784605
http://dx.doi.org/10.1016/j.molmet.2018.05.005
_version_ 1783336419186442240
author Montagne, Louise
Derhourhi, Mehdi
Piton, Amélie
Toussaint, Bénédicte
Durand, Emmanuelle
Vaillant, Emmanuel
Thuillier, Dorothée
Gaget, Stefan
De Graeve, Franck
Rabearivelo, Iandry
Lansiaux, Amélie
Lenne, Bruno
Sukno, Sylvie
Desailloud, Rachel
Cnop, Miriam
Nicolescu, Ramona
Cohen, Lior
Zagury, Jean-François
Amouyal, Mélanie
Weill, Jacques
Muller, Jean
Sand, Olivier
Delobel, Bruno
Froguel, Philippe
Bonnefond, Amélie
author_facet Montagne, Louise
Derhourhi, Mehdi
Piton, Amélie
Toussaint, Bénédicte
Durand, Emmanuelle
Vaillant, Emmanuel
Thuillier, Dorothée
Gaget, Stefan
De Graeve, Franck
Rabearivelo, Iandry
Lansiaux, Amélie
Lenne, Bruno
Sukno, Sylvie
Desailloud, Rachel
Cnop, Miriam
Nicolescu, Ramona
Cohen, Lior
Zagury, Jean-François
Amouyal, Mélanie
Weill, Jacques
Muller, Jean
Sand, Olivier
Delobel, Bruno
Froguel, Philippe
Bonnefond, Amélie
author_sort Montagne, Louise
collection PubMed
description OBJECTIVE: The molecular diagnosis of extreme forms of obesity, in which accurate detection of both copy number variations (CNVs) and point mutations, is crucial for an optimal care of the patients and genetic counseling for their families. Whole-exome sequencing (WES) has benefited considerably this molecular diagnosis, but its poor ability to detect CNVs remains a major limitation. We aimed to develop a method (CoDE-seq) enabling the accurate detection of both CNVs and point mutations in one step. METHODS: CoDE-seq is based on an augmented WES method, using probes distributed uniformly throughout the genome. CoDE-seq was validated in 40 patients for whom chromosomal DNA microarray was available. CNVs and mutations were assessed in 82 children/young adults with suspected Mendelian obesity and/or intellectual disability and in their parents when available (n(total) = 145). RESULTS: CoDE-seq not only detected all of the 97 CNVs identified by chromosomal DNA microarrays but also found 84 additional CNVs, due to a better resolution. When compared to CoDE-seq and chromosomal DNA microarrays, WES failed to detect 37% and 14% of CNVs, respectively. In the 82 patients, a likely molecular diagnosis was achieved in >30% of the patients. Half of the genetic diagnoses were explained by CNVs while the other half by mutations. CONCLUSIONS: CoDE-seq has proven cost-efficient and highly effective as it avoids the sequential genetic screening approaches currently used in clinical practice for the accurate detection of CNVs and point mutations.
format Online
Article
Text
id pubmed-6026315
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-60263152018-07-06 CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability Montagne, Louise Derhourhi, Mehdi Piton, Amélie Toussaint, Bénédicte Durand, Emmanuelle Vaillant, Emmanuel Thuillier, Dorothée Gaget, Stefan De Graeve, Franck Rabearivelo, Iandry Lansiaux, Amélie Lenne, Bruno Sukno, Sylvie Desailloud, Rachel Cnop, Miriam Nicolescu, Ramona Cohen, Lior Zagury, Jean-François Amouyal, Mélanie Weill, Jacques Muller, Jean Sand, Olivier Delobel, Bruno Froguel, Philippe Bonnefond, Amélie Mol Metab Original Article OBJECTIVE: The molecular diagnosis of extreme forms of obesity, in which accurate detection of both copy number variations (CNVs) and point mutations, is crucial for an optimal care of the patients and genetic counseling for their families. Whole-exome sequencing (WES) has benefited considerably this molecular diagnosis, but its poor ability to detect CNVs remains a major limitation. We aimed to develop a method (CoDE-seq) enabling the accurate detection of both CNVs and point mutations in one step. METHODS: CoDE-seq is based on an augmented WES method, using probes distributed uniformly throughout the genome. CoDE-seq was validated in 40 patients for whom chromosomal DNA microarray was available. CNVs and mutations were assessed in 82 children/young adults with suspected Mendelian obesity and/or intellectual disability and in their parents when available (n(total) = 145). RESULTS: CoDE-seq not only detected all of the 97 CNVs identified by chromosomal DNA microarrays but also found 84 additional CNVs, due to a better resolution. When compared to CoDE-seq and chromosomal DNA microarrays, WES failed to detect 37% and 14% of CNVs, respectively. In the 82 patients, a likely molecular diagnosis was achieved in >30% of the patients. Half of the genetic diagnoses were explained by CNVs while the other half by mutations. CONCLUSIONS: CoDE-seq has proven cost-efficient and highly effective as it avoids the sequential genetic screening approaches currently used in clinical practice for the accurate detection of CNVs and point mutations. Elsevier 2018-05-16 /pmc/articles/PMC6026315/ /pubmed/29784605 http://dx.doi.org/10.1016/j.molmet.2018.05.005 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Montagne, Louise
Derhourhi, Mehdi
Piton, Amélie
Toussaint, Bénédicte
Durand, Emmanuelle
Vaillant, Emmanuel
Thuillier, Dorothée
Gaget, Stefan
De Graeve, Franck
Rabearivelo, Iandry
Lansiaux, Amélie
Lenne, Bruno
Sukno, Sylvie
Desailloud, Rachel
Cnop, Miriam
Nicolescu, Ramona
Cohen, Lior
Zagury, Jean-François
Amouyal, Mélanie
Weill, Jacques
Muller, Jean
Sand, Olivier
Delobel, Bruno
Froguel, Philippe
Bonnefond, Amélie
CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability
title CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability
title_full CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability
title_fullStr CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability
title_full_unstemmed CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability
title_short CoDE-seq, an augmented whole-exome sequencing, enables the accurate detection of CNVs and mutations in Mendelian obesity and intellectual disability
title_sort code-seq, an augmented whole-exome sequencing, enables the accurate detection of cnvs and mutations in mendelian obesity and intellectual disability
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026315/
https://www.ncbi.nlm.nih.gov/pubmed/29784605
http://dx.doi.org/10.1016/j.molmet.2018.05.005
work_keys_str_mv AT montagnelouise codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT derhourhimehdi codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT pitonamelie codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT toussaintbenedicte codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT durandemmanuelle codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT vaillantemmanuel codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT thuillierdorothee codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT gagetstefan codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT degraevefranck codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT rabeariveloiandry codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT lansiauxamelie codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT lennebruno codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT suknosylvie codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT desailloudrachel codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT cnopmiriam codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT nicolescuramona codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT cohenlior codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT zaguryjeanfrancois codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT amouyalmelanie codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT weilljacques codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT mullerjean codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT sandolivier codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT delobelbruno codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT froguelphilippe codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability
AT bonnefondamelie codeseqanaugmentedwholeexomesequencingenablestheaccuratedetectionofcnvsandmutationsinmendelianobesityandintellectualdisability