Cargando…
The assessment of metabolite alteration induced by –OH functionalized multi-walled carbon nanotubes in mice using NMR-based metabonomics
[Image: see text] Introduction: There is a fundamental need to characterize multiwalled carbon nanotubes (MWCNTs) toxicity to guarantee their safe application. Functionalized MWCNTs have recently attracted special interest in order to enhance biocompatibility. The aim of the current work was to stud...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tabriz University of Medical Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026527/ https://www.ncbi.nlm.nih.gov/pubmed/29977832 http://dx.doi.org/10.15171/bi.2018.13 |
Sumario: | [Image: see text] Introduction: There is a fundamental need to characterize multiwalled carbon nanotubes (MWCNTs) toxicity to guarantee their safe application. Functionalized MWCNTs have recently attracted special interest in order to enhance biocompatibility. The aim of the current work was to study the underlying toxicity mechanism of the -OH-functionalized MWCNTs (MWCNTs-OH), using the powerful NMR-based metabonomics technique. Methods: Following intraperitoneal single-injection of mice with 3 doses of MWCNTs-OH and one control, samples were collected at four time points during 22-days for NMR, biochemistry, and histopathology analysis. Metabolome profiling and pathway analysis were implemented by chemometrics tools and metabolome databases. Results: Based on the (1)H-NMR data, metabolic perturbation induced by MWCNTs-OH were characterized by altered levels of steroid hormones, including elevated androgens, estrogens, corticosterone, and aldosterone. Moreover, increased L-lysine, aminoadipate, taurine and taurocholic acid and decreased biotin were observed in the high-dose group (1 mg.kg(-1) B.W.) compared to the control. The findings also indicated that steroid hormone biosynthesis, lysine biosynthesis, and biotin metabolism are the most affected pathways by MWCNTs-OH. Conclusion: These pathways can reflect perturbation of energy, amino acids, and fat metabolism, as well as oxidative stress. The data obtained by biochemistry, metabonomics, and histopathology were in good agreement, proving that MWCNTs-OH was excreted within 24 h, through the biliary pathway. |
---|