Cargando…
Unsupervised segmentation of greenhouse plant images based on modified Latent Dirichlet Allocation
Agricultural greenhouse plant images with complicated scenes are difficult to precisely manually label. The appearance of leaf disease spots and mosses increases the difficulty in plant segmentation. Considering these problems, this paper proposed a statistical image segmentation algorithm MSBS-LDA...
Autores principales: | Wang, Yi, Xu, Lihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026534/ https://www.ncbi.nlm.nih.gov/pubmed/29967727 http://dx.doi.org/10.7717/peerj.5036 |
Ejemplares similares
-
Unsupervised Segmentation of Greenhouse Plant Images Based on Statistical Method
por: Zhang, Ping, et al.
Publicado: (2018) -
Context-Aware Latent Dirichlet Allocation for Topic Segmentation
por: Li, Wenbo, et al.
Publicado: (2020) -
Latent Dirichlet Allocation modeling of environmental microbiomes
por: Kim, Anastasiia, et al.
Publicado: (2023) -
Identification of Building Damage from UAV-Based Photogrammetric Point Clouds Using Supervoxel Segmentation and Latent Dirichlet Allocation Model
por: Liu, Chaoxian, et al.
Publicado: (2020) -
Latent Dirichlet Allocation in predicting clinical trial terminations
por: Geletta, Simon, et al.
Publicado: (2019)