Cargando…
Inhibition of Mast Cell Function and Proliferation by mTOR Activator MHY1485
Mast cells integrate innate and adaptive immunity and are implicated in pathophysiological conditions, including allergy, asthma, and anaphylaxis. Cross-linking of the high-affinity IgE receptor (FcεRI) initiates diverse signal transduction pathways and induces release of proinflammatory mediators b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Association of Immunologists
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026687/ https://www.ncbi.nlm.nih.gov/pubmed/29984036 http://dx.doi.org/10.4110/in.2018.18.e18 |
_version_ | 1783336485182767104 |
---|---|
author | Rakhmanova, Valeriya Jin, Mirim Shin, Jinwook |
author_facet | Rakhmanova, Valeriya Jin, Mirim Shin, Jinwook |
author_sort | Rakhmanova, Valeriya |
collection | PubMed |
description | Mast cells integrate innate and adaptive immunity and are implicated in pathophysiological conditions, including allergy, asthma, and anaphylaxis. Cross-linking of the high-affinity IgE receptor (FcεRI) initiates diverse signal transduction pathways and induces release of proinflammatory mediators by mast cells. In this study, we demonstrated that hyperactivation of mechanistic target of rapamycin (mTOR) signaling using the mTOR activator MHY1485 suppresses FcεRI-mediated mast cell degranulation and cytokine secretion. MHY1485 treatment increased ribosomal protein S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation, which are downstream targets of mTOR complex 1 (mTORC1), but decreased phosphorylation of Akt on mTOR complex 2 (mTORC2) target site serine 473. In addition, this activator decreased β-hexosaminidase, IL-6, and tumor necrosis factor α (TNF-α) release in murine bone marrow-derived mast cells (BMMCs) after FcεRI stimulation. Furthermore, MHY1485-treated BMMCs showed significantly decreased proliferation when cultured with IL-3. These findings suggested hyperactivation of mTORC1 as a therapeutic strategy for mast cell-related diseases. |
format | Online Article Text |
id | pubmed-6026687 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Korean Association of Immunologists |
record_format | MEDLINE/PubMed |
spelling | pubmed-60266872018-07-06 Inhibition of Mast Cell Function and Proliferation by mTOR Activator MHY1485 Rakhmanova, Valeriya Jin, Mirim Shin, Jinwook Immune Netw Brief Communication Mast cells integrate innate and adaptive immunity and are implicated in pathophysiological conditions, including allergy, asthma, and anaphylaxis. Cross-linking of the high-affinity IgE receptor (FcεRI) initiates diverse signal transduction pathways and induces release of proinflammatory mediators by mast cells. In this study, we demonstrated that hyperactivation of mechanistic target of rapamycin (mTOR) signaling using the mTOR activator MHY1485 suppresses FcεRI-mediated mast cell degranulation and cytokine secretion. MHY1485 treatment increased ribosomal protein S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation, which are downstream targets of mTOR complex 1 (mTORC1), but decreased phosphorylation of Akt on mTOR complex 2 (mTORC2) target site serine 473. In addition, this activator decreased β-hexosaminidase, IL-6, and tumor necrosis factor α (TNF-α) release in murine bone marrow-derived mast cells (BMMCs) after FcεRI stimulation. Furthermore, MHY1485-treated BMMCs showed significantly decreased proliferation when cultured with IL-3. These findings suggested hyperactivation of mTORC1 as a therapeutic strategy for mast cell-related diseases. The Korean Association of Immunologists 2018-06-04 /pmc/articles/PMC6026687/ /pubmed/29984036 http://dx.doi.org/10.4110/in.2018.18.e18 Text en Copyright © 2018. The Korean Association of Immunologists https://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Brief Communication Rakhmanova, Valeriya Jin, Mirim Shin, Jinwook Inhibition of Mast Cell Function and Proliferation by mTOR Activator MHY1485 |
title | Inhibition of Mast Cell Function and Proliferation by mTOR Activator MHY1485 |
title_full | Inhibition of Mast Cell Function and Proliferation by mTOR Activator MHY1485 |
title_fullStr | Inhibition of Mast Cell Function and Proliferation by mTOR Activator MHY1485 |
title_full_unstemmed | Inhibition of Mast Cell Function and Proliferation by mTOR Activator MHY1485 |
title_short | Inhibition of Mast Cell Function and Proliferation by mTOR Activator MHY1485 |
title_sort | inhibition of mast cell function and proliferation by mtor activator mhy1485 |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026687/ https://www.ncbi.nlm.nih.gov/pubmed/29984036 http://dx.doi.org/10.4110/in.2018.18.e18 |
work_keys_str_mv | AT rakhmanovavaleriya inhibitionofmastcellfunctionandproliferationbymtoractivatormhy1485 AT jinmirim inhibitionofmastcellfunctionandproliferationbymtoractivatormhy1485 AT shinjinwook inhibitionofmastcellfunctionandproliferationbymtoractivatormhy1485 |