Cargando…
Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists
Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phe...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027220/ https://www.ncbi.nlm.nih.gov/pubmed/29925808 http://dx.doi.org/10.3390/genes9060309 |
_version_ | 1783336561114349568 |
---|---|
author | Guerriero, Gea Berni, Roberto Muñoz-Sanchez, J. Armando Apone, Fabio Abdel-Salam, Eslam M. Qahtan, Ahmad A. Alatar, Abdulrahman A. Cantini, Claudio Cai, Giampiero Hausman, Jean-Francois Siddiqui, Khawar Sohail Hernández-Sotomayor, S. M. Teresa Faisal, Mohammad |
author_facet | Guerriero, Gea Berni, Roberto Muñoz-Sanchez, J. Armando Apone, Fabio Abdel-Salam, Eslam M. Qahtan, Ahmad A. Alatar, Abdulrahman A. Cantini, Claudio Cai, Giampiero Hausman, Jean-Francois Siddiqui, Khawar Sohail Hernández-Sotomayor, S. M. Teresa Faisal, Mohammad |
author_sort | Guerriero, Gea |
collection | PubMed |
description | Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phenolic compounds, alkaloids and sulphur-containing compounds. These phytochemicals can be antimicrobial, act as attractants/repellents, or as deterrents against herbivores. The synthesis of such a rich variety of phytochemicals is also observed in undifferentiated plant cells under laboratory conditions and can be further induced with elicitors or by feeding precursors. In this review, we discuss the recent literature on the production of representatives of three plant secondary metabolite classes: artemisinin (a sesquiterpene), lignans (phenolic compounds) and caffeine (an alkaloid). Their respective production in well-known plants, i.e., Artemisia, Coffea arabica L., as well as neglected species, like the fibre-producing plant Urtica dioica L., will be surveyed. The production of artemisinin and caffeine in heterologous hosts will also be discussed. Additionally, metabolic engineering strategies to increase the bioactivity and stability of plant secondary metabolites will be surveyed, by focusing on glycosyltransferases (GTs). We end our review by proposing strategies to enhance the production of plant secondary metabolites in cell cultures by inducing cell wall modifications with chemicals/drugs, or with altered concentrations of the micronutrient boron and the quasi-essential element silicon. |
format | Online Article Text |
id | pubmed-6027220 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60272202018-07-13 Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists Guerriero, Gea Berni, Roberto Muñoz-Sanchez, J. Armando Apone, Fabio Abdel-Salam, Eslam M. Qahtan, Ahmad A. Alatar, Abdulrahman A. Cantini, Claudio Cai, Giampiero Hausman, Jean-Francois Siddiqui, Khawar Sohail Hernández-Sotomayor, S. M. Teresa Faisal, Mohammad Genes (Basel) Review Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phenolic compounds, alkaloids and sulphur-containing compounds. These phytochemicals can be antimicrobial, act as attractants/repellents, or as deterrents against herbivores. The synthesis of such a rich variety of phytochemicals is also observed in undifferentiated plant cells under laboratory conditions and can be further induced with elicitors or by feeding precursors. In this review, we discuss the recent literature on the production of representatives of three plant secondary metabolite classes: artemisinin (a sesquiterpene), lignans (phenolic compounds) and caffeine (an alkaloid). Their respective production in well-known plants, i.e., Artemisia, Coffea arabica L., as well as neglected species, like the fibre-producing plant Urtica dioica L., will be surveyed. The production of artemisinin and caffeine in heterologous hosts will also be discussed. Additionally, metabolic engineering strategies to increase the bioactivity and stability of plant secondary metabolites will be surveyed, by focusing on glycosyltransferases (GTs). We end our review by proposing strategies to enhance the production of plant secondary metabolites in cell cultures by inducing cell wall modifications with chemicals/drugs, or with altered concentrations of the micronutrient boron and the quasi-essential element silicon. MDPI 2018-06-20 /pmc/articles/PMC6027220/ /pubmed/29925808 http://dx.doi.org/10.3390/genes9060309 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Guerriero, Gea Berni, Roberto Muñoz-Sanchez, J. Armando Apone, Fabio Abdel-Salam, Eslam M. Qahtan, Ahmad A. Alatar, Abdulrahman A. Cantini, Claudio Cai, Giampiero Hausman, Jean-Francois Siddiqui, Khawar Sohail Hernández-Sotomayor, S. M. Teresa Faisal, Mohammad Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists |
title | Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists |
title_full | Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists |
title_fullStr | Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists |
title_full_unstemmed | Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists |
title_short | Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists |
title_sort | production of plant secondary metabolites: examples, tips and suggestions for biotechnologists |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027220/ https://www.ncbi.nlm.nih.gov/pubmed/29925808 http://dx.doi.org/10.3390/genes9060309 |
work_keys_str_mv | AT guerrierogea productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT berniroberto productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT munozsanchezjarmando productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT aponefabio productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT abdelsalameslamm productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT qahtanahmada productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT alatarabdulrahmana productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT cantiniclaudio productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT caigiampiero productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT hausmanjeanfrancois productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT siddiquikhawarsohail productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT hernandezsotomayorsmteresa productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists AT faisalmohammad productionofplantsecondarymetabolitesexamplestipsandsuggestionsforbiotechnologists |