Cargando…
A Short Peptide Inhibitor as an Activity-Based Probe for Matriptase-2
Matriptase-2 is a type II transmembrane serine protease and a key regulator of systemic iron homeostasis. Since the activation mechanism and several features of the physiological role of matriptase-2 are not fully understood, there is strong need for analytical tools to perform tasks such as disting...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027297/ https://www.ncbi.nlm.nih.gov/pubmed/29883401 http://dx.doi.org/10.3390/ph11020049 |
Sumario: | Matriptase-2 is a type II transmembrane serine protease and a key regulator of systemic iron homeostasis. Since the activation mechanism and several features of the physiological role of matriptase-2 are not fully understood, there is strong need for analytical tools to perform tasks such as distinguishing active and inactive matriptase-2. For this purpose we present a short biotinylated peptide derivative with a chloromethyl ketone group, biotin-RQRR-CMK, as an activity-based probe for matriptase-2. Biotin-RQRR-CMK was kinetically characterized and exhibited a second-order rate constant of inactivation (k(inac)/K(i)) of 10,800 M(−1) s(−1) towards the matriptase-2 activity in the supernatant of transfected human embryonic kidney (HEK) cells. Biotin-RQRR-CMK was able to label active matriptase-2, as visualized in western blot experiments. Pretreatment with aprotinin, an active-site directed inhibitor of serine proteases, protected matriptase-2 from the reaction with biotin-RQRR-CMK. |
---|