Cargando…
Artificially Expanded Genetic Information Systems for New Aptamer Technologies
Directed evolution was first applied to diverse libraries of DNA and RNA molecules a quarter century ago in the hope of gaining technology that would allow the creation of receptors, ligands, and catalysts on demand. Despite isolated successes, the outputs of this technology have been somewhat disap...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027400/ https://www.ncbi.nlm.nih.gov/pubmed/29747381 http://dx.doi.org/10.3390/biomedicines6020053 |
Sumario: | Directed evolution was first applied to diverse libraries of DNA and RNA molecules a quarter century ago in the hope of gaining technology that would allow the creation of receptors, ligands, and catalysts on demand. Despite isolated successes, the outputs of this technology have been somewhat disappointing, perhaps because the four building blocks of standard DNA and RNA have too little functionality to have versatile binding properties, and offer too little information density to fold unambiguously. This review covers the recent literature that seeks to create an improved platform to support laboratory Darwinism, one based on an artificially expanded genetic information system (AEGIS) that adds independently replicating nucleotide “letters” to the evolving “alphabet”. |
---|