Cargando…

Silicon Influences Soil Availability and Accumulation of Mineral Nutrients in Various Plant Species

Silicon (Si) effects on mineral nutrient status in plants are not well investigated. It is known that Si has a beneficial effect on plants under stressed conditions. The aim was to make a state of the art investigation of the Si influence: (1) on nutrient availability in four different soil types, n...

Descripción completa

Detalles Bibliográficos
Autores principales: Greger, Maria, Landberg, Tommy, Vaculík, Marek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027514/
https://www.ncbi.nlm.nih.gov/pubmed/29783754
http://dx.doi.org/10.3390/plants7020041
Descripción
Sumario:Silicon (Si) effects on mineral nutrient status in plants are not well investigated. It is known that Si has a beneficial effect on plants under stressed conditions. The aim was to make a state of the art investigation of the Si influence: (1) on nutrient availability in four different soil types, namely clayish, sandy, alum shale and submerged soil; and (2) on accumulation of various nutrients in maize, lettuce, pea, carrot and wheat growing in hydroponics. Soil was treated with K(2)SiO(3) corresponding to 80 and 1000 kg Si ha(−1) and the nutrient medium with 100, 500, 1000 and 5000 μM Si. In general, Si effects were similar in all analyzed plant species and in all soil types tested. Results showed that, in soil, Si increased the availability of Ca, P, S, Mn, Zn, Cu and Mo and that of Cl and Fe tended to increase. The availability of K and Mg was not much affected by Si. Uptake from solution of S, Mg, Ca, B, Fe, and Mn increased; N, Cu, Zn and K decreased; P decreased/increased; and Cl and Mo was not influenced. Translocation to shoot of Mg, Ca, S, Mn, and Mo increased; Fe, Cu and Zn decreased; and K, P, N, Cl and B was not affected. It was concluded that, if plants had been cultivated in soil, Si-maintained increased availability of nutrients in the soil solution would probably compensate for the decrease in tissue concentration of those nutrient elements. The study shows that Si also influences the nutrient uptake in non-stressed plants.