Cargando…

Bayesian Networks Predict Neuronal Transdifferentiation

We employ the language of Bayesian networks to systematically construct gene-regulation topologies from deep-sequencing single-nucleus RNA-Seq data for human neurons. From the perspective of the cell-state potential landscape, we identify attractors that correspond closely to different neuron subtyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Ainsworth, Richard I., Ai, Rizi, Ding, Bo, Li, Nan, Zhang, Kai, Wang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027867/
https://www.ncbi.nlm.nih.gov/pubmed/29848620
http://dx.doi.org/10.1534/g3.118.200401
Descripción
Sumario:We employ the language of Bayesian networks to systematically construct gene-regulation topologies from deep-sequencing single-nucleus RNA-Seq data for human neurons. From the perspective of the cell-state potential landscape, we identify attractors that correspond closely to different neuron subtypes. Attractors are also recovered for cell states from an independent data set confirming our models accurate description of global genetic regulations across differing cell types of the neocortex (not included in the training data). Our model recovers experimentally confirmed genetic regulations and community analysis reveals genetic associations in common pathways. Via a comprehensive scan of all theoretical three-gene perturbations of gene knockout and overexpression, we discover novel neuronal trans-differrentiation recipes (including perturbations of SATB2, GAD1, POU6F2 and ADARB2) for excitatory projection neuron and inhibitory interneuron subtypes.