Cargando…

A Genomic Region Containing REC8 and RNF212B Is Associated with Individual Recombination Rate Variation in a Wild Population of Red Deer (Cervus elaphus)

Recombination is a fundamental feature of sexual reproduction, ensuring proper disjunction, preventing mutation accumulation and generating new allelic combinations upon which selection can act. However it is also mutagenic, and breaks up favorable allelic combinations previously built up by selecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnston, Susan E., Huisman, Jisca, Pemberton, Josephine M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027875/
https://www.ncbi.nlm.nih.gov/pubmed/29764960
http://dx.doi.org/10.1534/g3.118.200063
_version_ 1783336688922132480
author Johnston, Susan E.
Huisman, Jisca
Pemberton, Josephine M.
author_facet Johnston, Susan E.
Huisman, Jisca
Pemberton, Josephine M.
author_sort Johnston, Susan E.
collection PubMed
description Recombination is a fundamental feature of sexual reproduction, ensuring proper disjunction, preventing mutation accumulation and generating new allelic combinations upon which selection can act. However it is also mutagenic, and breaks up favorable allelic combinations previously built up by selection. Identifying the genetic drivers of recombination rate variation is a key step in understanding the causes and consequences of this variation, how loci associated with recombination are evolving and how they affect the potential of a population to respond to selection. However, to date, few studies have examined the genetic architecture of recombination rate variation in natural populations. Here, we use pedigree data from ∼ 2,600 individuals genotyped at ∼ 38,000 SNPs to investigate the genetic architecture of individual autosomal recombination rate in a wild population of red deer (Cervus elaphus). Female red deer exhibited a higher mean and phenotypic variance in autosomal crossover counts (ACC). Animal models fitting genomic relatedness matrices showed that ACC was heritable in females ([Formula: see text] = 0.12) but not in males. A regional heritability mapping approach showed that almost all heritable variation in female ACC was explained by a genomic region on deer linkage group 12 containing the candidate loci REC8 and RNF212B, with an additional region on linkage group 32 containing TOP2B approaching genome-wide significance. The REC8/RNF212B region and its paralogue RNF212 have been associated with recombination in cattle, mice, humans and sheep. Our findings suggest that mammalian recombination rates have a relatively conserved genetic architecture in both domesticated and wild systems, and provide a foundation for understanding the association between recombination loci and individual fitness within this population.
format Online
Article
Text
id pubmed-6027875
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-60278752018-07-03 A Genomic Region Containing REC8 and RNF212B Is Associated with Individual Recombination Rate Variation in a Wild Population of Red Deer (Cervus elaphus) Johnston, Susan E. Huisman, Jisca Pemberton, Josephine M. G3 (Bethesda) Investigations Recombination is a fundamental feature of sexual reproduction, ensuring proper disjunction, preventing mutation accumulation and generating new allelic combinations upon which selection can act. However it is also mutagenic, and breaks up favorable allelic combinations previously built up by selection. Identifying the genetic drivers of recombination rate variation is a key step in understanding the causes and consequences of this variation, how loci associated with recombination are evolving and how they affect the potential of a population to respond to selection. However, to date, few studies have examined the genetic architecture of recombination rate variation in natural populations. Here, we use pedigree data from ∼ 2,600 individuals genotyped at ∼ 38,000 SNPs to investigate the genetic architecture of individual autosomal recombination rate in a wild population of red deer (Cervus elaphus). Female red deer exhibited a higher mean and phenotypic variance in autosomal crossover counts (ACC). Animal models fitting genomic relatedness matrices showed that ACC was heritable in females ([Formula: see text] = 0.12) but not in males. A regional heritability mapping approach showed that almost all heritable variation in female ACC was explained by a genomic region on deer linkage group 12 containing the candidate loci REC8 and RNF212B, with an additional region on linkage group 32 containing TOP2B approaching genome-wide significance. The REC8/RNF212B region and its paralogue RNF212 have been associated with recombination in cattle, mice, humans and sheep. Our findings suggest that mammalian recombination rates have a relatively conserved genetic architecture in both domesticated and wild systems, and provide a foundation for understanding the association between recombination loci and individual fitness within this population. Genetics Society of America 2018-05-15 /pmc/articles/PMC6027875/ /pubmed/29764960 http://dx.doi.org/10.1534/g3.118.200063 Text en Copyright © 2018 Johnston et al. http://creativecommons.org/license/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Investigations
Johnston, Susan E.
Huisman, Jisca
Pemberton, Josephine M.
A Genomic Region Containing REC8 and RNF212B Is Associated with Individual Recombination Rate Variation in a Wild Population of Red Deer (Cervus elaphus)
title A Genomic Region Containing REC8 and RNF212B Is Associated with Individual Recombination Rate Variation in a Wild Population of Red Deer (Cervus elaphus)
title_full A Genomic Region Containing REC8 and RNF212B Is Associated with Individual Recombination Rate Variation in a Wild Population of Red Deer (Cervus elaphus)
title_fullStr A Genomic Region Containing REC8 and RNF212B Is Associated with Individual Recombination Rate Variation in a Wild Population of Red Deer (Cervus elaphus)
title_full_unstemmed A Genomic Region Containing REC8 and RNF212B Is Associated with Individual Recombination Rate Variation in a Wild Population of Red Deer (Cervus elaphus)
title_short A Genomic Region Containing REC8 and RNF212B Is Associated with Individual Recombination Rate Variation in a Wild Population of Red Deer (Cervus elaphus)
title_sort genomic region containing rec8 and rnf212b is associated with individual recombination rate variation in a wild population of red deer (cervus elaphus)
topic Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027875/
https://www.ncbi.nlm.nih.gov/pubmed/29764960
http://dx.doi.org/10.1534/g3.118.200063
work_keys_str_mv AT johnstonsusane agenomicregioncontainingrec8andrnf212bisassociatedwithindividualrecombinationratevariationinawildpopulationofreddeercervuselaphus
AT huismanjisca agenomicregioncontainingrec8andrnf212bisassociatedwithindividualrecombinationratevariationinawildpopulationofreddeercervuselaphus
AT pembertonjosephinem agenomicregioncontainingrec8andrnf212bisassociatedwithindividualrecombinationratevariationinawildpopulationofreddeercervuselaphus
AT johnstonsusane genomicregioncontainingrec8andrnf212bisassociatedwithindividualrecombinationratevariationinawildpopulationofreddeercervuselaphus
AT huismanjisca genomicregioncontainingrec8andrnf212bisassociatedwithindividualrecombinationratevariationinawildpopulationofreddeercervuselaphus
AT pembertonjosephinem genomicregioncontainingrec8andrnf212bisassociatedwithindividualrecombinationratevariationinawildpopulationofreddeercervuselaphus