Cargando…
Quantitative Morphological Variation in the Developing Drosophila Wing
Quantitative genetic variation in morphology is pervasive in all species and is the basis for the evolution of differences among species. The measurement of morphological form in adults is now beginning to be combined with comparable measurements of form during development. Here we compare the shape...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027878/ https://www.ncbi.nlm.nih.gov/pubmed/29844017 http://dx.doi.org/10.1534/g3.118.200372 |
_version_ | 1783336689663475712 |
---|---|
author | Matamoro-Vidal, Alexis Huang, Yunxian Salazar-Ciudad, Isaac Shimmi, Osamu Houle, David |
author_facet | Matamoro-Vidal, Alexis Huang, Yunxian Salazar-Ciudad, Isaac Shimmi, Osamu Houle, David |
author_sort | Matamoro-Vidal, Alexis |
collection | PubMed |
description | Quantitative genetic variation in morphology is pervasive in all species and is the basis for the evolution of differences among species. The measurement of morphological form in adults is now beginning to be combined with comparable measurements of form during development. Here we compare the shape of the developing wing to its adult form in a holometabolous insect, Drosophila melanogaster. We used protein expression patterns to measure shape in the developing precursors of the final adult wing. Three developmental stages were studied: late larval third instar, post-pupariation and in the adult fly. We studied wild-type animals in addition to mutants of two genes (shf and ds) that have known effects on adult wing shape and size. Despite experimental noise related to the difficulty of comparing developing structures, we found consistent differences in wing shape and size at each developmental stage between genotypes. Quantitative comparisons of variation arising at different developmental stages with the variation in the final structure enable us to determine when variation arises, and to generate hypotheses about the causes of that variation. In addition we provide linear rules allowing us to link wing morphology in the larva, with wing morphology in the pupa. Our approach provides a framework to analyze quantitative morphological variation in the developing fly wing. This framework should help to characterize the natural variation of the larval and pupal wing shape, and to measure the contribution of the processes occurring during these developmental stages to the natural variation in adult wing morphology. |
format | Online Article Text |
id | pubmed-6027878 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-60278782018-07-03 Quantitative Morphological Variation in the Developing Drosophila Wing Matamoro-Vidal, Alexis Huang, Yunxian Salazar-Ciudad, Isaac Shimmi, Osamu Houle, David G3 (Bethesda) Investigations Quantitative genetic variation in morphology is pervasive in all species and is the basis for the evolution of differences among species. The measurement of morphological form in adults is now beginning to be combined with comparable measurements of form during development. Here we compare the shape of the developing wing to its adult form in a holometabolous insect, Drosophila melanogaster. We used protein expression patterns to measure shape in the developing precursors of the final adult wing. Three developmental stages were studied: late larval third instar, post-pupariation and in the adult fly. We studied wild-type animals in addition to mutants of two genes (shf and ds) that have known effects on adult wing shape and size. Despite experimental noise related to the difficulty of comparing developing structures, we found consistent differences in wing shape and size at each developmental stage between genotypes. Quantitative comparisons of variation arising at different developmental stages with the variation in the final structure enable us to determine when variation arises, and to generate hypotheses about the causes of that variation. In addition we provide linear rules allowing us to link wing morphology in the larva, with wing morphology in the pupa. Our approach provides a framework to analyze quantitative morphological variation in the developing fly wing. This framework should help to characterize the natural variation of the larval and pupal wing shape, and to measure the contribution of the processes occurring during these developmental stages to the natural variation in adult wing morphology. Genetics Society of America 2018-06-04 /pmc/articles/PMC6027878/ /pubmed/29844017 http://dx.doi.org/10.1534/g3.118.200372 Text en Copyright © 2018 Matamoro-Vidal et al. http://creativecommons.org/license/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigations Matamoro-Vidal, Alexis Huang, Yunxian Salazar-Ciudad, Isaac Shimmi, Osamu Houle, David Quantitative Morphological Variation in the Developing Drosophila Wing |
title | Quantitative Morphological Variation in the Developing Drosophila Wing |
title_full | Quantitative Morphological Variation in the Developing Drosophila Wing |
title_fullStr | Quantitative Morphological Variation in the Developing Drosophila Wing |
title_full_unstemmed | Quantitative Morphological Variation in the Developing Drosophila Wing |
title_short | Quantitative Morphological Variation in the Developing Drosophila Wing |
title_sort | quantitative morphological variation in the developing drosophila wing |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027878/ https://www.ncbi.nlm.nih.gov/pubmed/29844017 http://dx.doi.org/10.1534/g3.118.200372 |
work_keys_str_mv | AT matamorovidalalexis quantitativemorphologicalvariationinthedevelopingdrosophilawing AT huangyunxian quantitativemorphologicalvariationinthedevelopingdrosophilawing AT salazarciudadisaac quantitativemorphologicalvariationinthedevelopingdrosophilawing AT shimmiosamu quantitativemorphologicalvariationinthedevelopingdrosophilawing AT houledavid quantitativemorphologicalvariationinthedevelopingdrosophilawing |