Cargando…
Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
BACKGROUND: Many studies have been done on the emotion recognition based on multi-channel electroencephalogram (EEG) signals. OBJECTIVE: This paper explores the influence of the emotion recognition accuracy of EEG signals in different frequency bands and different number of channels. METHODS: We cla...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027901/ https://www.ncbi.nlm.nih.gov/pubmed/29758974 http://dx.doi.org/10.3233/THC-174836 |
_version_ | 1783336695024844800 |
---|---|
author | Li, Mi Xu, Hongpei Liu, Xingwang Lu, Shengfu |
author_facet | Li, Mi Xu, Hongpei Liu, Xingwang Lu, Shengfu |
author_sort | Li, Mi |
collection | PubMed |
description | BACKGROUND: Many studies have been done on the emotion recognition based on multi-channel electroencephalogram (EEG) signals. OBJECTIVE: This paper explores the influence of the emotion recognition accuracy of EEG signals in different frequency bands and different number of channels. METHODS: We classified the emotional states in the valence and arousal dimensions using different combinations of EEG channels. Firstly, DEAP default preprocessed data were normalized. Next, EEG signals were divided into four frequency bands using discrete wavelet transform, and entropy and energy were calculated as features of K-nearest neighbor Classifier. RESULTS: The classification accuracies of the 10, 14, 18 and 32 EEG channels based on the Gamma frequency band were 89.54%, 92.28%, 93.72% and 95.70% in the valence dimension and 89.81%, 92.24%, 93.69% and 95.69% in the arousal dimension. As the number of channels increases, the classification accuracy of emotional states also increases, the classification accuracy of the gamma frequency band is greater than that of the beta frequency band followed by the alpha and theta frequency bands. CONCLUSIONS: This paper provided better frequency bands and channels reference for emotion recognition based on EEG. |
format | Online Article Text |
id | pubmed-6027901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | IOS Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-60279012018-07-05 Emotion recognition from multichannel EEG signals using K-nearest neighbor classification Li, Mi Xu, Hongpei Liu, Xingwang Lu, Shengfu Technol Health Care Research Article BACKGROUND: Many studies have been done on the emotion recognition based on multi-channel electroencephalogram (EEG) signals. OBJECTIVE: This paper explores the influence of the emotion recognition accuracy of EEG signals in different frequency bands and different number of channels. METHODS: We classified the emotional states in the valence and arousal dimensions using different combinations of EEG channels. Firstly, DEAP default preprocessed data were normalized. Next, EEG signals were divided into four frequency bands using discrete wavelet transform, and entropy and energy were calculated as features of K-nearest neighbor Classifier. RESULTS: The classification accuracies of the 10, 14, 18 and 32 EEG channels based on the Gamma frequency band were 89.54%, 92.28%, 93.72% and 95.70% in the valence dimension and 89.81%, 92.24%, 93.69% and 95.69% in the arousal dimension. As the number of channels increases, the classification accuracy of emotional states also increases, the classification accuracy of the gamma frequency band is greater than that of the beta frequency band followed by the alpha and theta frequency bands. CONCLUSIONS: This paper provided better frequency bands and channels reference for emotion recognition based on EEG. IOS Press 2018-07-01 /pmc/articles/PMC6027901/ /pubmed/29758974 http://dx.doi.org/10.3233/THC-174836 Text en © 2018 – IOS Press and the authors. All rights reserved https://creativecommons.org/licenses/by-nc/4.0/ This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0). |
spellingShingle | Research Article Li, Mi Xu, Hongpei Liu, Xingwang Lu, Shengfu Emotion recognition from multichannel EEG signals using K-nearest neighbor classification |
title | Emotion recognition from multichannel EEG signals using K-nearest neighbor classification |
title_full | Emotion recognition from multichannel EEG signals using K-nearest neighbor classification |
title_fullStr | Emotion recognition from multichannel EEG signals using K-nearest neighbor classification |
title_full_unstemmed | Emotion recognition from multichannel EEG signals using K-nearest neighbor classification |
title_short | Emotion recognition from multichannel EEG signals using K-nearest neighbor classification |
title_sort | emotion recognition from multichannel eeg signals using k-nearest neighbor classification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027901/ https://www.ncbi.nlm.nih.gov/pubmed/29758974 http://dx.doi.org/10.3233/THC-174836 |
work_keys_str_mv | AT limi emotionrecognitionfrommultichanneleegsignalsusingknearestneighborclassification AT xuhongpei emotionrecognitionfrommultichanneleegsignalsusingknearestneighborclassification AT liuxingwang emotionrecognitionfrommultichanneleegsignalsusingknearestneighborclassification AT lushengfu emotionrecognitionfrommultichanneleegsignalsusingknearestneighborclassification |