Cargando…
Joint regression and classification via relational regularization for Parkinson’s disease diagnosis
It is known that the symptoms of Parkinson’s disease (PD) progress successively, early and accurate diagnosis of the disease is of great importance, which slows the disease deterioration further and alleviates mental and physical suffering. In this paper, we propose a joint regression and classifica...
Autores principales: | Lei, Haijun, Huang, Zhongwei, Han, Tao, Luo, Qiuming, Cai, Ye, Liu, Gang, Lei, Baiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027902/ https://www.ncbi.nlm.nih.gov/pubmed/29689760 http://dx.doi.org/10.3233/THC-174540 |
Ejemplares similares
-
Sparse feature learning for multi-class Parkinson’s disease classification
por: Lei, Haijun, et al.
Publicado: (2018) -
Pathway-gene identification for pancreatic cancer survival via doubly regularized Cox regression
por: Gong, Haijun, et al.
Publicado: (2014) -
Correlated mutations via regularized multinomial regression
por: Sreekumar, Janardanan, et al.
Publicado: (2011) -
Evolutionary polynomial regression improved by regularization methods
por: Li, Yao, et al.
Publicado: (2023) -
Multi-center sparse learning and decision fusion for automatic COVID-19 diagnosis
por: Huang, Zhongwei, et al.
Publicado: (2022)