Cargando…
Weak Antilocalization and Quantum Oscillations of Surface States in Topologically Nontrivial DyPdBi(110)Half Heusler alloy
Recently, a number of ternary half-Heusler compounds have been predicted independently by several research groups as candidates for 3D topological insulators. In this work, we report the observation of a two-dimensional (2D) weak antilocalization (WAL) effect, one of the hall-marks of topological su...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028386/ https://www.ncbi.nlm.nih.gov/pubmed/29967437 http://dx.doi.org/10.1038/s41598-018-28382-1 |
Sumario: | Recently, a number of ternary half-Heusler compounds have been predicted independently by several research groups as candidates for 3D topological insulators. In this work, we report the observation of a two-dimensional (2D) weak antilocalization (WAL) effect, one of the hall-marks of topological surface states, and Shubnikov-de Hass (SdH) quantum oscillations in <110> oriented DyPdBi (DPB) thin films grown on MgO (100) substrates. The films prepared by pulsed laser deposition technique under the optimized conditions, showed a textured structure with (110) planes parallel to the (100) plane of MgO. The measured WAL effect follows the Hikami-Larkin-Nagaoka (HLN) model and the extracted values of phase coherence length (l(ϕ)) and α are ~420 nm and ~−0.52 respectively. The power law variation of l(ϕ) (~T(−0.46)) indicates the presence of the 2D surface states in DPB film. The Dirac nature of the surface states is further confirmed by Landau-level fan diagram analysis of SdH oscillations of the magneto-transport data. This analysis shows a finite Berry phase of 0.90π ± 0.16, reasonably close to the expected π value. Sheet Carrier density, n(s) ~ 2.56 × 10(12) cm(−2), calculated from the SdH oscillations (f(SdH) ~ 106 T) and Hall measurements agree well with each other. These findings demonstrate that the half Heusler DPB thin films (~15–20 nm) can be used as a suitable material for investigating the novel intrinsic quantum transport properties of surface Dirac fermions. |
---|