Cargando…

Giant antidamping orbital torque originating from the orbital Rashba-Edelstein effect in ferromagnetic heterostructures

Enhancing the in-plane current-induced torque efficiency in inversion-symmetry-breaking ferromagnetic heterostructures is of both fundamental and practical interests for emerging magnetic memory device applications. Here, we present an interface-originated magnetoelectric effect, the orbital Rashba–...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xi, Liu, Yang, Yang, Guang, Shi, Hui, Hu, Chen, Li, Minghua, Zeng, Haibo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028484/
https://www.ncbi.nlm.nih.gov/pubmed/29967453
http://dx.doi.org/10.1038/s41467-018-05057-z
_version_ 1783336772649877504
author Chen, Xi
Liu, Yang
Yang, Guang
Shi, Hui
Hu, Chen
Li, Minghua
Zeng, Haibo
author_facet Chen, Xi
Liu, Yang
Yang, Guang
Shi, Hui
Hu, Chen
Li, Minghua
Zeng, Haibo
author_sort Chen, Xi
collection PubMed
description Enhancing the in-plane current-induced torque efficiency in inversion-symmetry-breaking ferromagnetic heterostructures is of both fundamental and practical interests for emerging magnetic memory device applications. Here, we present an interface-originated magnetoelectric effect, the orbital Rashba–Edelstein effect, for realizing large torque efficiency in Pt/Co/SiO(2)/Pt films with strong perpendicular magnetic anisotropy (PMA). The key element is a pronounced Co 3d orbital splitting due to asymmetric orbital hybridization at the Pt/Co and Co/SiO(2) interfaces, which not only stabilizes the PMA but also produces a large orbital torque upon the Co magnetization with current injection. The torque efficiency is found to be strongly magnetization direction- and temperature-dependent, and can reach up to 2.83 at room temperature, which is several times to one order of magnitude larger than those previously reported. This work highlights the active role of the orbital anisotropy for efficient torque generation and indicates a route for torque efficiency optimization through orbital engineering.
format Online
Article
Text
id pubmed-6028484
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60284842018-07-05 Giant antidamping orbital torque originating from the orbital Rashba-Edelstein effect in ferromagnetic heterostructures Chen, Xi Liu, Yang Yang, Guang Shi, Hui Hu, Chen Li, Minghua Zeng, Haibo Nat Commun Article Enhancing the in-plane current-induced torque efficiency in inversion-symmetry-breaking ferromagnetic heterostructures is of both fundamental and practical interests for emerging magnetic memory device applications. Here, we present an interface-originated magnetoelectric effect, the orbital Rashba–Edelstein effect, for realizing large torque efficiency in Pt/Co/SiO(2)/Pt films with strong perpendicular magnetic anisotropy (PMA). The key element is a pronounced Co 3d orbital splitting due to asymmetric orbital hybridization at the Pt/Co and Co/SiO(2) interfaces, which not only stabilizes the PMA but also produces a large orbital torque upon the Co magnetization with current injection. The torque efficiency is found to be strongly magnetization direction- and temperature-dependent, and can reach up to 2.83 at room temperature, which is several times to one order of magnitude larger than those previously reported. This work highlights the active role of the orbital anisotropy for efficient torque generation and indicates a route for torque efficiency optimization through orbital engineering. Nature Publishing Group UK 2018-07-02 /pmc/articles/PMC6028484/ /pubmed/29967453 http://dx.doi.org/10.1038/s41467-018-05057-z Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Chen, Xi
Liu, Yang
Yang, Guang
Shi, Hui
Hu, Chen
Li, Minghua
Zeng, Haibo
Giant antidamping orbital torque originating from the orbital Rashba-Edelstein effect in ferromagnetic heterostructures
title Giant antidamping orbital torque originating from the orbital Rashba-Edelstein effect in ferromagnetic heterostructures
title_full Giant antidamping orbital torque originating from the orbital Rashba-Edelstein effect in ferromagnetic heterostructures
title_fullStr Giant antidamping orbital torque originating from the orbital Rashba-Edelstein effect in ferromagnetic heterostructures
title_full_unstemmed Giant antidamping orbital torque originating from the orbital Rashba-Edelstein effect in ferromagnetic heterostructures
title_short Giant antidamping orbital torque originating from the orbital Rashba-Edelstein effect in ferromagnetic heterostructures
title_sort giant antidamping orbital torque originating from the orbital rashba-edelstein effect in ferromagnetic heterostructures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028484/
https://www.ncbi.nlm.nih.gov/pubmed/29967453
http://dx.doi.org/10.1038/s41467-018-05057-z
work_keys_str_mv AT chenxi giantantidampingorbitaltorqueoriginatingfromtheorbitalrashbaedelsteineffectinferromagneticheterostructures
AT liuyang giantantidampingorbitaltorqueoriginatingfromtheorbitalrashbaedelsteineffectinferromagneticheterostructures
AT yangguang giantantidampingorbitaltorqueoriginatingfromtheorbitalrashbaedelsteineffectinferromagneticheterostructures
AT shihui giantantidampingorbitaltorqueoriginatingfromtheorbitalrashbaedelsteineffectinferromagneticheterostructures
AT huchen giantantidampingorbitaltorqueoriginatingfromtheorbitalrashbaedelsteineffectinferromagneticheterostructures
AT liminghua giantantidampingorbitaltorqueoriginatingfromtheorbitalrashbaedelsteineffectinferromagneticheterostructures
AT zenghaibo giantantidampingorbitaltorqueoriginatingfromtheorbitalrashbaedelsteineffectinferromagneticheterostructures