Cargando…

Adolescent Hippocampal and Prefrontal Brain Activation During Performance of the Virtual Morris Water Task

The frontal cortex undergoes substantial structural and functional changes during adolescence and significant developmental changes also occur in the hippocampus. Both of these regions are notably vulnerable to alcohol and other substance use, which is typically initiated during adolescence. Identif...

Descripción completa

Detalles Bibliográficos
Autores principales: Sneider, Jennifer T., Cohen-Gilbert, Julia E., Hamilton, Derek A., Stein, Elena R., Golan, Noa, Oot, Emily N., Seraikas, Anna M., Rohan, Michael L., Harris, Sion K., Nickerson, Lisa D., Silveri, Marisa M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028523/
https://www.ncbi.nlm.nih.gov/pubmed/29997486
http://dx.doi.org/10.3389/fnhum.2018.00238
_version_ 1783336781246103552
author Sneider, Jennifer T.
Cohen-Gilbert, Julia E.
Hamilton, Derek A.
Stein, Elena R.
Golan, Noa
Oot, Emily N.
Seraikas, Anna M.
Rohan, Michael L.
Harris, Sion K.
Nickerson, Lisa D.
Silveri, Marisa M.
author_facet Sneider, Jennifer T.
Cohen-Gilbert, Julia E.
Hamilton, Derek A.
Stein, Elena R.
Golan, Noa
Oot, Emily N.
Seraikas, Anna M.
Rohan, Michael L.
Harris, Sion K.
Nickerson, Lisa D.
Silveri, Marisa M.
author_sort Sneider, Jennifer T.
collection PubMed
description The frontal cortex undergoes substantial structural and functional changes during adolescence and significant developmental changes also occur in the hippocampus. Both of these regions are notably vulnerable to alcohol and other substance use, which is typically initiated during adolescence. Identifying measures of brain function during adolescence, particularly before initiation of drug or alcohol use, is critical to understanding how such behaviors may affect brain development, especially in these vulnerable brain regions. While there is a substantial developmental literature on adolescent working memory, less is known about spatial memory. Thus, a virtual Morris water task (vMWT) was applied to probe function of the adolescent hippocampus. Multiband blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) data were acquired at 3T during task performance. Participants included 32 healthy, alcohol- and drug-naïve adolescents, 13–14 years old, examined at baseline of a 3-year longitudinal MRI study. Significantly greater BOLD activation was observed in the hippocampus and surrounding areas, and in prefrontal regions involved in executive function, during retrieval relative to motor performance. In contrast, significantly greater BOLD activation was observed in components of the default mode network, including frontal medial cortex, during the motor condition (when task demands were minimal) relative to the retrieval condition. Worse performance (longer path length) during retrieval was associated with greater activation of angular gyrus/supramarginal gyrus, whereas worse performance (longer path length/latency) during motor control was associated with less activation of frontal pole. Furthermore, while latency (time to complete task) was greater in females than in males, there were no sex differences in path length (accuracy), suggesting that females required more time to navigate the virtual environment, but did so as effectively as males. These findings demonstrate that performance of the vMWT elicits hippocampal and prefrontal activation patterns in early adolescence, similar to activation observed during spatial memory retrieval in adults. Given that this task is sensitive to hippocampal function, and that the adolescent hippocampus is notably vulnerable to the effects of alcohol and other substances, data acquired using this task during healthy adolescent development may provide a framework for understanding neurobiological impact of later initiation of use.
format Online
Article
Text
id pubmed-6028523
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-60285232018-07-11 Adolescent Hippocampal and Prefrontal Brain Activation During Performance of the Virtual Morris Water Task Sneider, Jennifer T. Cohen-Gilbert, Julia E. Hamilton, Derek A. Stein, Elena R. Golan, Noa Oot, Emily N. Seraikas, Anna M. Rohan, Michael L. Harris, Sion K. Nickerson, Lisa D. Silveri, Marisa M. Front Hum Neurosci Neuroscience The frontal cortex undergoes substantial structural and functional changes during adolescence and significant developmental changes also occur in the hippocampus. Both of these regions are notably vulnerable to alcohol and other substance use, which is typically initiated during adolescence. Identifying measures of brain function during adolescence, particularly before initiation of drug or alcohol use, is critical to understanding how such behaviors may affect brain development, especially in these vulnerable brain regions. While there is a substantial developmental literature on adolescent working memory, less is known about spatial memory. Thus, a virtual Morris water task (vMWT) was applied to probe function of the adolescent hippocampus. Multiband blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) data were acquired at 3T during task performance. Participants included 32 healthy, alcohol- and drug-naïve adolescents, 13–14 years old, examined at baseline of a 3-year longitudinal MRI study. Significantly greater BOLD activation was observed in the hippocampus and surrounding areas, and in prefrontal regions involved in executive function, during retrieval relative to motor performance. In contrast, significantly greater BOLD activation was observed in components of the default mode network, including frontal medial cortex, during the motor condition (when task demands were minimal) relative to the retrieval condition. Worse performance (longer path length) during retrieval was associated with greater activation of angular gyrus/supramarginal gyrus, whereas worse performance (longer path length/latency) during motor control was associated with less activation of frontal pole. Furthermore, while latency (time to complete task) was greater in females than in males, there were no sex differences in path length (accuracy), suggesting that females required more time to navigate the virtual environment, but did so as effectively as males. These findings demonstrate that performance of the vMWT elicits hippocampal and prefrontal activation patterns in early adolescence, similar to activation observed during spatial memory retrieval in adults. Given that this task is sensitive to hippocampal function, and that the adolescent hippocampus is notably vulnerable to the effects of alcohol and other substances, data acquired using this task during healthy adolescent development may provide a framework for understanding neurobiological impact of later initiation of use. Frontiers Media S.A. 2018-06-26 /pmc/articles/PMC6028523/ /pubmed/29997486 http://dx.doi.org/10.3389/fnhum.2018.00238 Text en Copyright © 2018 Sneider, Cohen-Gilbert, Hamilton, Stein, Golan, Oot, Seraikas, Rohan, Harris, Nickerson and Silveri. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Sneider, Jennifer T.
Cohen-Gilbert, Julia E.
Hamilton, Derek A.
Stein, Elena R.
Golan, Noa
Oot, Emily N.
Seraikas, Anna M.
Rohan, Michael L.
Harris, Sion K.
Nickerson, Lisa D.
Silveri, Marisa M.
Adolescent Hippocampal and Prefrontal Brain Activation During Performance of the Virtual Morris Water Task
title Adolescent Hippocampal and Prefrontal Brain Activation During Performance of the Virtual Morris Water Task
title_full Adolescent Hippocampal and Prefrontal Brain Activation During Performance of the Virtual Morris Water Task
title_fullStr Adolescent Hippocampal and Prefrontal Brain Activation During Performance of the Virtual Morris Water Task
title_full_unstemmed Adolescent Hippocampal and Prefrontal Brain Activation During Performance of the Virtual Morris Water Task
title_short Adolescent Hippocampal and Prefrontal Brain Activation During Performance of the Virtual Morris Water Task
title_sort adolescent hippocampal and prefrontal brain activation during performance of the virtual morris water task
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028523/
https://www.ncbi.nlm.nih.gov/pubmed/29997486
http://dx.doi.org/10.3389/fnhum.2018.00238
work_keys_str_mv AT sneiderjennifert adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask
AT cohengilbertjuliae adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask
AT hamiltondereka adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask
AT steinelenar adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask
AT golannoa adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask
AT ootemilyn adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask
AT seraikasannam adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask
AT rohanmichaell adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask
AT harrissionk adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask
AT nickersonlisad adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask
AT silverimarisam adolescenthippocampalandprefrontalbrainactivationduringperformanceofthevirtualmorriswatertask