Cargando…

The universally conserved GTPase HflX is an RNA helicase that restores heat-damaged Escherichia coli ribosomes

The ribosome-associated GTPase HflX acts as an antiassociation factor upon binding to the 50S ribosomal subunit during heat stress in Escherichia coli. Although HflX is recognized as a guanosine triphosphatase, several studies have shown that the N-terminal domain 1 of HflX is capable of hydrolyzing...

Descripción completa

Detalles Bibliográficos
Autores principales: Dey, Sandip, Biswas, Chiranjit, Sengupta, Jayati
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028529/
https://www.ncbi.nlm.nih.gov/pubmed/29930203
http://dx.doi.org/10.1083/jcb.201711131
Descripción
Sumario:The ribosome-associated GTPase HflX acts as an antiassociation factor upon binding to the 50S ribosomal subunit during heat stress in Escherichia coli. Although HflX is recognized as a guanosine triphosphatase, several studies have shown that the N-terminal domain 1 of HflX is capable of hydrolyzing adenosine triphosphate (ATP), but the functional role of its adenosine triphosphatase (ATPase) activity remains unknown. We demonstrate that E. coli HflX possesses ATP-dependent RNA helicase activity and is capable of unwinding large subunit ribosomal RNA. A cryo–electron microscopy structure of the 50S–HflX complex in the presence of nonhydrolyzable analogues of ATP and guanosine triphosphate hints at a mode of action for the RNA helicase and suggests the linker helical domain may have a determinant role in RNA unwinding. Heat stress results in inactivation of the ribosome, and we show that HflX can restore heat-damaged ribosomes and improve cell survival.