Cargando…

Complex Network Geometry and Frustrated Synchronization

The dynamics of networks of neuronal cultures has been recently shown to be strongly dependent on the network geometry and in particular on their dimensionality. However, this phenomenon has been so far mostly unexplored from the theoretical point of view. Here we reveal the rich interplay between n...

Descripción completa

Detalles Bibliográficos
Autores principales: Millán, Ana P., Torres, Joaquín J., Bianconi, Ginestra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028575/
https://www.ncbi.nlm.nih.gov/pubmed/29967410
http://dx.doi.org/10.1038/s41598-018-28236-w
Descripción
Sumario:The dynamics of networks of neuronal cultures has been recently shown to be strongly dependent on the network geometry and in particular on their dimensionality. However, this phenomenon has been so far mostly unexplored from the theoretical point of view. Here we reveal the rich interplay between network geometry and synchronization of coupled oscillators in the context of a simplicial complex model of manifolds called Complex Network Manifold. The networks generated by this model combine small world properties (infinite Hausdorff dimension) and a high modular structure with finite and tunable spectral dimension. We show that the networks display frustrated synchronization for a wide range of the coupling strength of the oscillators, and that the synchronization properties are directly affected by the spectral dimension of the network.