Cargando…
Optimization of neural networks via finite-value quantum fluctuations
We numerically test an optimization method for deep neural networks (DNNs) using quantum fluctuations inspired by quantum annealing. For efficient optimization, our method utilizes the quantum tunneling effect beyond the potential barriers. The path integral formulation of the DNN optimization gener...
Autores principales: | Ohzeki, Masayuki, Okada, Shuntaro, Terabe, Masayoshi, Taguchi, Shinichiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028692/ https://www.ncbi.nlm.nih.gov/pubmed/29967442 http://dx.doi.org/10.1038/s41598-018-28212-4 |
Ejemplares similares
-
Improving solutions by embedding larger subproblems in a D-Wave quantum annealer
por: Okada, Shuntaro, et al.
Publicado: (2019) -
Efficient partition of integer optimization problems with one-hot encoding
por: Okada, Shuntaro, et al.
Publicado: (2019) -
Breaking limitation of quantum annealer in solving optimization problems under constraints
por: Ohzeki, Masayuki
Publicado: (2020) -
Benchmark of quantum-inspired heuristic solvers for quadratic unconstrained binary optimization
por: Oshiyama, Hiroki, et al.
Publicado: (2022) -
Quantum Monte Carlo simulation of a particular class of non-stoquastic Hamiltonians in quantum annealing
por: Ohzeki, Masayuki
Publicado: (2017)