Cargando…
Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset
Changes in the timing of plant phenological phases are important proxies in contemporary climate research. However, most of the commonly used traditional phenological observations do not give any coherent spatial information. While consistent spatial data can be obtained from airborne sensors and pr...
Autores principales: | Czernecki, Bartosz, Nowosad, Jakub, Jabłońska, Katarzyna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028898/ https://www.ncbi.nlm.nih.gov/pubmed/29644431 http://dx.doi.org/10.1007/s00484-018-1534-2 |
Ejemplares similares
-
Satellite meteorology : an introduction
por: Kidder, Stanley Q.
Publicado: (1995) -
Review: advances in in situ and satellite phenological observations in Japan
por: Nagai, Shin, et al.
Publicado: (2015) -
Meteorological satellite systems
por: Tan, Su-Yin
Publicado: (2014) -
Development of a gridded meteorological dataset over Java island, Indonesia 1985–2014
por: Yanto, et al.
Publicado: (2017) -
Enhancing the Australian Gridded Climate Dataset rainfall analysis using satellite data
por: Chua, Zhi-Weng, et al.
Publicado: (2022)