Cargando…
Telmisartan protects chronic intermittent hypoxic mice via modulating cardiac renin-angiotensin system activity
BACKGROUND: To explore the effects of chronic intermittent hypoxia (CIH), which mimics sleep apnea syndrome, on the cardiac renin angiotensin system (RAS), and to investigate the cardiac protection of an angiotensin receptor blocker (ARB)telmisartan (TERT) against CIH. METHODS: 32 healthy male C57B6...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029129/ https://www.ncbi.nlm.nih.gov/pubmed/29969996 http://dx.doi.org/10.1186/s12872-018-0875-4 |
Sumario: | BACKGROUND: To explore the effects of chronic intermittent hypoxia (CIH), which mimics sleep apnea syndrome, on the cardiac renin angiotensin system (RAS), and to investigate the cardiac protection of an angiotensin receptor blocker (ARB)telmisartan (TERT) against CIH. METHODS: 32 healthy male C57B6J mice were randomly divided into CIH, ARB, blank and air control groups. CIH lasted for 12 weeks. Cardiac angiotensin converting enzyme (ACE), angiotensin converting enzyme 2 (ACE 2) and angiotensin II (Ang II) were evaluated by immunohistochemistry. Myocardial apoptosis were assessed by TUNEL assay and myocardial cell ultrastructure were observed under transmission electron microscope. RESULTS: Cardiac ACE expression was higher in the CIH group than in blank and air control groups, which was decreased with TERT treatment. TERT treatment elevated the expression of cardiac ACE 2 and Ang II compared with CIH group. Myocardial cell and capillary endothelial cell apoptosis, mitochondrial injury were most severe in CIH groups, which were mitigated with TERT treatment. CONCLUSIONS: CIH changes the expression of cardiac ACE, ACE2 and Ang II, which may cause myocardial damage. TERT protects mice from CIH-linked cardiac damage via modulating the activity of RAS in the hearts. |
---|