Cargando…
Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks
BACKGROUND: RNA regulation is significantly dependent on its binding protein partner, known as the RNA-binding proteins (RBPs). Unfortunately, the binding preferences for most RBPs are still not well characterized. Interdependencies between sequence and secondary structure specificities is challengi...
Autores principales: | Pan, Xiaoyong, Rijnbeek, Peter, Yan, Junchi, Shen, Hong-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029131/ https://www.ncbi.nlm.nih.gov/pubmed/29970003 http://dx.doi.org/10.1186/s12864-018-4889-1 |
Ejemplares similares
-
Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction
por: Han, Youngmahn, et al.
Publicado: (2017) -
Prediction of MoRFs based on sequence properties and convolutional neural networks
por: He, Hao, et al.
Publicado: (2021) -
MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks
por: Lin, Yang-Ming, et al.
Publicado: (2019) -
IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction
por: Pan, Xiaoyong, et al.
Publicado: (2016) -
Overlapping filter bank convolutional neural network for multisubject multicategory motor imagery brain-computer interface
por: Luo, Jing, et al.
Publicado: (2023)