Cargando…
Estimating causal effects of time-dependent exposures on a binary endpoint in a high-dimensional setting
BACKGROUND: Recently, the intervention calculus when the DAG is absent (IDA) method was developed to estimate lower bounds of causal effects from observational high-dimensional data. Originally it was introduced to assess the effect of baseline biomarkers which do not vary over time. However, in man...
Autores principales: | Asvatourian, Vahé, Coutzac, Clélia, Chaput, Nathalie, Robert, Caroline, Michiels, Stefan, Lanoy, Emilie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029422/ https://www.ncbi.nlm.nih.gov/pubmed/29969993 http://dx.doi.org/10.1186/s12874-018-0527-5 |
Ejemplares similares
-
G-computation and machine learning for estimating the causal effects of binary exposure statuses on binary outcomes
por: Le Borgne, Florent, et al.
Publicado: (2021) -
Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates
por: Burgess, Stephen, et al.
Publicado: (2018) -
Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer
por: Coutzac, Clélia, et al.
Publicado: (2020) -
Interim analysis incorporating short‐ and long‐term binary endpoints
por: Niewczas, Julia, et al.
Publicado: (2019) -
Estimation of causal effects of multiple treatments in observational studies with a binary outcome
por: Hu, Liangyuan, et al.
Publicado: (2020)