Cargando…
Solving the RNA design problem with reinforcement learning
We use reinforcement learning to train an agent for computational RNA design: given a target secondary structure, design a sequence that folds to that structure in silico. Our agent uses a novel graph convolutional architecture allowing a single model to be applied to arbitrary target structures of...
Autores principales: | Eastman, Peter, Shi, Jade, Ramsundar, Bharath, Pande, Vijay S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029810/ https://www.ncbi.nlm.nih.gov/pubmed/29927936 http://dx.doi.org/10.1371/journal.pcbi.1006176 |
Ejemplares similares
-
Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more
por: Ramsundar, Bharath, et al.
Publicado: (2019) -
TensorFlow for deep learning: from linear regression to reinforcement learning
por: Ramsundar, Bharath, et al.
Publicado: (2018) -
Low Data Drug Discovery with One-Shot Learning
por: Altae-Tran, Han, et al.
Publicado: (2017) -
MoleculeNet: a benchmark for molecular machine learning
por: Wu, Zhenqin, et al.
Publicado: (2017) -
Learning to solve problems : a handbook for designing problem-solving learning environments /
por: Jonassen, David H., 1947-
Publicado: (2011)