Cargando…
Design of Bionic Cochlear Basilar Membrane Acoustic Sensor for Frequency Selectivity Based on Film Triboelectric Nanogenerator
Sensorineural hearing loss tops the list of most suffering disease for the sake of its chronic, spirit pressing, and handicapped features, which can happen to all age groups, from newborns to old folks. Laggard technical design as well as external power dependence of conventional cochlear implant cu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029990/ https://www.ncbi.nlm.nih.gov/pubmed/29971697 http://dx.doi.org/10.1186/s11671-018-2593-3 |
Sumario: | Sensorineural hearing loss tops the list of most suffering disease for the sake of its chronic, spirit pressing, and handicapped features, which can happen to all age groups, from newborns to old folks. Laggard technical design as well as external power dependence of conventional cochlear implant cumbers agonized patients and restrict its wider practical application, driving researchers to seek for fundamental improvement. In this paper, we successfully proposed a novel bionic cochlear basilar membrane acoustic sensor in conjugation with triboelectric nanogenerator. By trapezoidally distributing nine silver electrodes on both two polytetrafluoroethylene membranes, a highly frequency-selective function was fulfilled in this gadget, ranging from 20 to 3000 Hz. It is believed to be more discernable with the increment of electrode numbers, referring to the actual basilar membrane in the cochlear. Besides, the as-made device can be somewhat self-powered via absorption of vibration energy carried by sound, which tremendously facilitates its potential users. As a consequence, the elaborate bionic system provides an innovative perspective tackling the problem of sensorineural hearing loss. |
---|