Cargando…
Optimal neural inference of stimulus intensities
In natural data, the class and intensity of stimuli are correlated. Current machine learning algorithms ignore this ubiquitous statistical property of stimuli, usually by requiring normalized inputs. From a biological perspective, it remains unclear how neural circuits may account for these dependen...
Autores principales: | Monk, Travis, Savin, Cristina, Lücke, Jörg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030062/ https://www.ncbi.nlm.nih.gov/pubmed/29968764 http://dx.doi.org/10.1038/s41598-018-28184-5 |
Ejemplares similares
-
Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
por: Oesterle, Jonathan, et al.
Publicado: (2020) -
Neural coding of monaural and binaural intensity at low stimulus frequencies
por: Bures, Zbynek, et al.
Publicado: (2015) -
A stimulus-dependent spike threshold is an optimal neural coder
por: Jones, Douglas L., et al.
Publicado: (2015) -
Bayesian inference from single spikes
por: Monk, Travis, et al.
Publicado: (2013) -
Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin?
por: Keck, Christian, et al.
Publicado: (2012)