Cargando…
Estimating missing values in China’s official socioeconomic statistics using progressive spatiotemporal Bayesian hierarchical modeling
Due to a large number of missing values, both spatially and temporally, China has not published a complete official socioeconomic statistics dataset at the county level, which is the country’s basic scale of official statistics data collection. We developed a procedure to impute the missing values u...
Autores principales: | Song, Chao, Yang, Xiu, Shi, Xun, Bo, Yanchen, Wang, Jinfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030081/ https://www.ncbi.nlm.nih.gov/pubmed/29968777 http://dx.doi.org/10.1038/s41598-018-28322-z |
Ejemplares similares
-
Risk Assessment and Mapping of Hand, Foot, and Mouth Disease at the County Level in Mainland China Using Spatiotemporal Zero-Inflated Bayesian Hierarchical Models
por: Song, Chao, et al.
Publicado: (2018) -
A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium
por: Maclaren, Oliver J., et al.
Publicado: (2017) -
Projecting malaria elimination in Thailand using Bayesian hierarchical spatiotemporal models
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2023) -
A hierarchical Bayesian approach for handling missing classification data
por: Ketz, Alison C., et al.
Publicado: (2019) -
Identifying spatiotemporal patterns of COVID-19 transmissions and the drivers of the patterns in Toronto: a Bayesian hierarchical spatiotemporal modelling
por: Nazia, Nushrat, et al.
Publicado: (2022)