Cargando…

Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift

Single-cell RNA sequencing allows defining molecularly distinct cell subpopulations. However, the identification of specific sets of transcription factors (TFs) that define the identity of these subpopulations remains a challenge. Here we propose that subpopulation identity emerges from the synergis...

Descripción completa

Detalles Bibliográficos
Autores principales: Okawa, Satoshi, Saltó, Carmen, Ravichandran, Srikanth, Yang, Shanzheng, Toledo, Enrique M., Arenas, Ernest, del Sol, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030214/
https://www.ncbi.nlm.nih.gov/pubmed/29968757
http://dx.doi.org/10.1038/s41467-018-05016-8
_version_ 1783337101104775168
author Okawa, Satoshi
Saltó, Carmen
Ravichandran, Srikanth
Yang, Shanzheng
Toledo, Enrique M.
Arenas, Ernest
del Sol, Antonio
author_facet Okawa, Satoshi
Saltó, Carmen
Ravichandran, Srikanth
Yang, Shanzheng
Toledo, Enrique M.
Arenas, Ernest
del Sol, Antonio
author_sort Okawa, Satoshi
collection PubMed
description Single-cell RNA sequencing allows defining molecularly distinct cell subpopulations. However, the identification of specific sets of transcription factors (TFs) that define the identity of these subpopulations remains a challenge. Here we propose that subpopulation identity emerges from the synergistic activity of multiple TFs. Based on this concept, we develop a computational platform (TransSyn) for identifying synergistic transcriptional cores that determine cell subpopulation identities. TransSyn leverages single-cell RNA-seq data, and performs a dynamic search for an optimal synergistic transcriptional core using an information theoretic measure of synergy. A large-scale TransSyn analysis identifies transcriptional cores for 186 subpopulations, and predicts identity conversion TFs between 3786 pairs of cell subpopulations. Finally, TransSyn predictions enable experimental conversion of human hindbrain neuroepithelial cells into medial floor plate midbrain progenitors, capable of rapidly differentiating into dopaminergic neurons. Thus, TransSyn can facilitate designing strategies for conversion of cell subpopulation identities with potential applications in regenerative medicine.
format Online
Article
Text
id pubmed-6030214
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60302142018-07-05 Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift Okawa, Satoshi Saltó, Carmen Ravichandran, Srikanth Yang, Shanzheng Toledo, Enrique M. Arenas, Ernest del Sol, Antonio Nat Commun Article Single-cell RNA sequencing allows defining molecularly distinct cell subpopulations. However, the identification of specific sets of transcription factors (TFs) that define the identity of these subpopulations remains a challenge. Here we propose that subpopulation identity emerges from the synergistic activity of multiple TFs. Based on this concept, we develop a computational platform (TransSyn) for identifying synergistic transcriptional cores that determine cell subpopulation identities. TransSyn leverages single-cell RNA-seq data, and performs a dynamic search for an optimal synergistic transcriptional core using an information theoretic measure of synergy. A large-scale TransSyn analysis identifies transcriptional cores for 186 subpopulations, and predicts identity conversion TFs between 3786 pairs of cell subpopulations. Finally, TransSyn predictions enable experimental conversion of human hindbrain neuroepithelial cells into medial floor plate midbrain progenitors, capable of rapidly differentiating into dopaminergic neurons. Thus, TransSyn can facilitate designing strategies for conversion of cell subpopulation identities with potential applications in regenerative medicine. Nature Publishing Group UK 2018-07-03 /pmc/articles/PMC6030214/ /pubmed/29968757 http://dx.doi.org/10.1038/s41467-018-05016-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Okawa, Satoshi
Saltó, Carmen
Ravichandran, Srikanth
Yang, Shanzheng
Toledo, Enrique M.
Arenas, Ernest
del Sol, Antonio
Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift
title Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift
title_full Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift
title_fullStr Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift
title_full_unstemmed Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift
title_short Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift
title_sort transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030214/
https://www.ncbi.nlm.nih.gov/pubmed/29968757
http://dx.doi.org/10.1038/s41467-018-05016-8
work_keys_str_mv AT okawasatoshi transcriptionalsynergyasanemergentpropertydefiningcellsubpopulationidentityenablespopulationshift
AT saltocarmen transcriptionalsynergyasanemergentpropertydefiningcellsubpopulationidentityenablespopulationshift
AT ravichandransrikanth transcriptionalsynergyasanemergentpropertydefiningcellsubpopulationidentityenablespopulationshift
AT yangshanzheng transcriptionalsynergyasanemergentpropertydefiningcellsubpopulationidentityenablespopulationshift
AT toledoenriquem transcriptionalsynergyasanemergentpropertydefiningcellsubpopulationidentityenablespopulationshift
AT arenasernest transcriptionalsynergyasanemergentpropertydefiningcellsubpopulationidentityenablespopulationshift
AT delsolantonio transcriptionalsynergyasanemergentpropertydefiningcellsubpopulationidentityenablespopulationshift