Cargando…

Separate block-based parameter estimation method for Hammerstein systems

Different from the output–input representation-based identification methods of two-block Hammerstein systems, this paper concerns a separate block-based parameter estimation method for each block of a two-block Hammerstein CARMA system, without combining the parameters of two parts together. The ide...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shuo, Wang, Dongqing, Liu, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030268/
https://www.ncbi.nlm.nih.gov/pubmed/30110418
http://dx.doi.org/10.1098/rsos.172194
_version_ 1783337113315442688
author Zhang, Shuo
Wang, Dongqing
Liu, Feng
author_facet Zhang, Shuo
Wang, Dongqing
Liu, Feng
author_sort Zhang, Shuo
collection PubMed
description Different from the output–input representation-based identification methods of two-block Hammerstein systems, this paper concerns a separate block-based parameter estimation method for each block of a two-block Hammerstein CARMA system, without combining the parameters of two parts together. The idea is to consider each block as a subsystem and to estimate the parameters of the nonlinear block and the linear block separately (interactively), by using two least-squares algorithms in one recursive step. The internal variable between the two blocks (the output of the nonlinear block, and also the input of the linear block) is replaced by different estimates: when estimating the parameters of the nonlinear part, the internal variable between the two blocks is computed by the linear function; when estimating the parameters of the linear part, the internal variable is computed by the nonlinear function. The proposed parameter estimation method possesses property of the higher computational efficiency compared with the previous over-parametrization method in which many redundant parameters need to be computed. The simulation results show the effectiveness of the proposed algorithm.
format Online
Article
Text
id pubmed-6030268
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-60302682018-07-17 Separate block-based parameter estimation method for Hammerstein systems Zhang, Shuo Wang, Dongqing Liu, Feng R Soc Open Sci Computer Science Different from the output–input representation-based identification methods of two-block Hammerstein systems, this paper concerns a separate block-based parameter estimation method for each block of a two-block Hammerstein CARMA system, without combining the parameters of two parts together. The idea is to consider each block as a subsystem and to estimate the parameters of the nonlinear block and the linear block separately (interactively), by using two least-squares algorithms in one recursive step. The internal variable between the two blocks (the output of the nonlinear block, and also the input of the linear block) is replaced by different estimates: when estimating the parameters of the nonlinear part, the internal variable between the two blocks is computed by the linear function; when estimating the parameters of the linear part, the internal variable is computed by the nonlinear function. The proposed parameter estimation method possesses property of the higher computational efficiency compared with the previous over-parametrization method in which many redundant parameters need to be computed. The simulation results show the effectiveness of the proposed algorithm. The Royal Society Publishing 2018-06-27 /pmc/articles/PMC6030268/ /pubmed/30110418 http://dx.doi.org/10.1098/rsos.172194 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Computer Science
Zhang, Shuo
Wang, Dongqing
Liu, Feng
Separate block-based parameter estimation method for Hammerstein systems
title Separate block-based parameter estimation method for Hammerstein systems
title_full Separate block-based parameter estimation method for Hammerstein systems
title_fullStr Separate block-based parameter estimation method for Hammerstein systems
title_full_unstemmed Separate block-based parameter estimation method for Hammerstein systems
title_short Separate block-based parameter estimation method for Hammerstein systems
title_sort separate block-based parameter estimation method for hammerstein systems
topic Computer Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030268/
https://www.ncbi.nlm.nih.gov/pubmed/30110418
http://dx.doi.org/10.1098/rsos.172194
work_keys_str_mv AT zhangshuo separateblockbasedparameterestimationmethodforhammersteinsystems
AT wangdongqing separateblockbasedparameterestimationmethodforhammersteinsystems
AT liufeng separateblockbasedparameterestimationmethodforhammersteinsystems