Cargando…
Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring
Paddy rice is one of the most important cereal crops worldwide, so it is very important to accurately monitor its growth status and photosynthetic efficiency. The nitrogen (N) level is a key factor closely related to crop growth. In this study, laser-induced fluorescence (LIF) technology combined wi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030289/ https://www.ncbi.nlm.nih.gov/pubmed/30110456 http://dx.doi.org/10.1098/rsos.180485 |
_version_ | 1783337118362238976 |
---|---|
author | Shen, Chaoyong Feng, Zhongke Zhou, Daoqin |
author_facet | Shen, Chaoyong Feng, Zhongke Zhou, Daoqin |
author_sort | Shen, Chaoyong |
collection | PubMed |
description | Paddy rice is one of the most important cereal crops worldwide, so it is very important to accurately monitor its growth status and photosynthetic efficiency. The nitrogen (N) level is a key factor closely related to crop growth. In this study, laser-induced fluorescence (LIF) technology combined with multi-variate analysis was applied to investigate the effect of paddy rice variety on N fertilizer level monitoring. Principal components analysis was conducted to extract the variables of the main fluorescence characteristics to identify N levels. Experimental results demonstrated that no nitrogen fertilizer can be completely identified for each paddy rice variety. In addition, other N levels can also be well classified based on the fluorescence characteristics. The relationship between the fluorescence ratio (F735/F685 : F735, and F685 denote the fluorescence intensity at 735 nm, and 685 nm, respectively) and leaf N content of different paddy rice varieties is also discussed. Experimental results revealed that LIF technology is an effective method of monitoring the N fertilizer and leaf biochemical components of paddy rice. |
format | Online Article Text |
id | pubmed-6030289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-60302892018-07-17 Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring Shen, Chaoyong Feng, Zhongke Zhou, Daoqin R Soc Open Sci Chemistry Paddy rice is one of the most important cereal crops worldwide, so it is very important to accurately monitor its growth status and photosynthetic efficiency. The nitrogen (N) level is a key factor closely related to crop growth. In this study, laser-induced fluorescence (LIF) technology combined with multi-variate analysis was applied to investigate the effect of paddy rice variety on N fertilizer level monitoring. Principal components analysis was conducted to extract the variables of the main fluorescence characteristics to identify N levels. Experimental results demonstrated that no nitrogen fertilizer can be completely identified for each paddy rice variety. In addition, other N levels can also be well classified based on the fluorescence characteristics. The relationship between the fluorescence ratio (F735/F685 : F735, and F685 denote the fluorescence intensity at 735 nm, and 685 nm, respectively) and leaf N content of different paddy rice varieties is also discussed. Experimental results revealed that LIF technology is an effective method of monitoring the N fertilizer and leaf biochemical components of paddy rice. The Royal Society Publishing 2018-06-27 /pmc/articles/PMC6030289/ /pubmed/30110456 http://dx.doi.org/10.1098/rsos.180485 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Chemistry Shen, Chaoyong Feng, Zhongke Zhou, Daoqin Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring |
title | Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring |
title_full | Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring |
title_fullStr | Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring |
title_full_unstemmed | Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring |
title_short | Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring |
title_sort | analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030289/ https://www.ncbi.nlm.nih.gov/pubmed/30110456 http://dx.doi.org/10.1098/rsos.180485 |
work_keys_str_mv | AT shenchaoyong analysingtheeffectofpaddyricevarietyonfluorescencecharacteristicsfornitrogenapplicationmonitoring AT fengzhongke analysingtheeffectofpaddyricevarietyonfluorescencecharacteristicsfornitrogenapplicationmonitoring AT zhoudaoqin analysingtheeffectofpaddyricevarietyonfluorescencecharacteristicsfornitrogenapplicationmonitoring |