Cargando…
Machine learning for identifying Randomized Controlled Trials: An evaluation and practitioner's guide
Machine learning (ML) algorithms have proven highly accurate for identifying Randomized Controlled Trials (RCTs) but are not used much in practice, in part because the best way to make use of the technology in a typical workflow is unclear. In this work, we evaluate ML models for RCT classification...
Autores principales: | Marshall, Iain J., Noel‐Storr, Anna, Kuiper, Joël, Thomas, James, Wallace, Byron C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030513/ https://www.ncbi.nlm.nih.gov/pubmed/29314757 http://dx.doi.org/10.1002/jrsm.1287 |
Ejemplares similares
-
Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach
por: Wallace, Byron C, et al.
Publicado: (2017) -
Machine learning to help researchers evaluate biases in clinical trials: a prospective, randomized user study
por: Soboczenski, Frank, et al.
Publicado: (2019) -
A Clinician's Guide to Artificial Intelligence: How to Critically Appraise Machine Learning Studies
por: Faes, Livia, et al.
Publicado: (2020) -
Trialstreamer: A living, automatically updated database of clinical trial reports
por: Marshall, Iain J, et al.
Publicado: (2020) -
Toward systematic review automation: a practical guide to using machine learning tools in research synthesis
por: Marshall, Iain J., et al.
Publicado: (2019)