Cargando…
Inertial forward–backward methods for solving vector optimization problems
We propose two forward–backward proximal point type algorithms with inertial/memory effects for determining weakly efficient solutions to a vector optimization problem consisting in vector-minimizing with respect to a given closed convex pointed cone the sum of a proper cone-convex vector function w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030681/ https://www.ncbi.nlm.nih.gov/pubmed/30008539 http://dx.doi.org/10.1080/02331934.2018.1440553 |
Sumario: | We propose two forward–backward proximal point type algorithms with inertial/memory effects for determining weakly efficient solutions to a vector optimization problem consisting in vector-minimizing with respect to a given closed convex pointed cone the sum of a proper cone-convex vector function with a cone-convex differentiable one, both mapping from a Hilbert space to a Banach one. Inexact versions of the algorithms, more suitable for implementation, are provided as well, while as a byproduct one can also derive a forward–backward method for solving the mentioned problem. Numerical experiments with the proposed methods are carried out in the context of solving a portfolio optimization problem. |
---|