Cargando…
Image set for deep learning: field images of maize annotated with disease symptoms
OBJECTIVES: Automated detection and quantification of plant diseases would enable more rapid gains in plant breeding and faster scouting of farmers’ fields. However, it is difficult for a simple algorithm to distinguish between the target disease and other sources of dead plant tissue in a typical f...
Autores principales: | Wiesner-Hanks, Tyr, Stewart, Ethan L., Kaczmar, Nicholas, DeChant, Chad, Wu, Harvey, Nelson, Rebecca J., Lipson, Hod, Gore, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030791/ https://www.ncbi.nlm.nih.gov/pubmed/29970178 http://dx.doi.org/10.1186/s13104-018-3548-6 |
Ejemplares similares
-
Millimeter-Level Plant Disease Detection From Aerial Photographs via Deep Learning and Crowdsourced Data
por: Wiesner-Hanks, Tyr, et al.
Publicado: (2019) -
Maize Genomes to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets
por: AlKhalifah, Naser, et al.
Publicado: (2018) -
Nitrogen deficiency in maize: Annotated image classification dataset
por: Salaić, Miroslav, et al.
Publicado: (2023) -
Conventional and hyperspectral time-series imaging of maize lines widely used in field trials
por: Liang, Zhikai, et al.
Publicado: (2017) -
Maize genomes to fields (G2F): 2014–2017 field seasons: genotype, phenotype, climatic, soil, and inbred ear image datasets
por: McFarland, Bridget A., et al.
Publicado: (2020)