Cargando…
Improved biomedical term selection in pseudo relevance feedback
Biomedical information retrieval systems are becoming popular and complex due to massive amount of ever-growing biomedical literature. Users are unable to construct a precise and accurate query that represents the intended information in a clear manner. Therefore, query is expanded with the terms or...
Autores principales: | Nabeel Asim, Muhammad, Wasim, Muhammad, Usman Ghani Khan, Muhammad, Mahmood, Waqar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030818/ https://www.ncbi.nlm.nih.gov/pubmed/29982558 http://dx.doi.org/10.1093/database/bay056 |
Ejemplares similares
-
A survey of ontology learning techniques and applications
por: Asim, Muhammad Nabeel, et al.
Publicado: (2018) -
Evaluation of Term Ranking Algorithms for Pseudo-Relevance Feedback in MEDLINE Retrieval
por: Yoo, Sooyoung, et al.
Publicado: (2011) -
Setting up a COVID-19 care facility at a prison: An experience from Pakistan
por: Ayyaz, Mahmood, et al.
Publicado: (2020) -
Combating COVID 19 in a public sector hospital in Pakistan
por: Ayyaz, Mahmood, et al.
Publicado: (2020) -
Genome-wide in silico identification and characterization of the stress associated protein (SAP) gene family encoding A20/AN1 zinc-finger proteins in potato (Solanum tuberosum L.)
por: Billah, Syyed Asim, et al.
Publicado: (2022)