Cargando…
GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits
Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030885/ https://www.ncbi.nlm.nih.gov/pubmed/29771388 http://dx.doi.org/10.1093/nar/gky407 |
_version_ | 1783337214722179072 |
---|---|
author | Huang, Dandan Yi, Xianfu Zhang, Shijie Zheng, Zhanye Wang, Panwen Xuan, Chenghao Sham, Pak Chung Wang, Junwen Li, Mulin Jun |
author_facet | Huang, Dandan Yi, Xianfu Zhang, Shijie Zheng, Zhanye Wang, Panwen Xuan, Chenghao Sham, Pak Chung Wang, Junwen Li, Mulin Jun |
author_sort | Huang, Dandan |
collection | PubMed |
description | Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants. |
format | Online Article Text |
id | pubmed-6030885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-60308852018-07-10 GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits Huang, Dandan Yi, Xianfu Zhang, Shijie Zheng, Zhanye Wang, Panwen Xuan, Chenghao Sham, Pak Chung Wang, Junwen Li, Mulin Jun Nucleic Acids Res Web Server Issue Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants. Oxford University Press 2018-07-02 2018-05-16 /pmc/articles/PMC6030885/ /pubmed/29771388 http://dx.doi.org/10.1093/nar/gky407 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Web Server Issue Huang, Dandan Yi, Xianfu Zhang, Shijie Zheng, Zhanye Wang, Panwen Xuan, Chenghao Sham, Pak Chung Wang, Junwen Li, Mulin Jun GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits |
title | GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits |
title_full | GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits |
title_fullStr | GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits |
title_full_unstemmed | GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits |
title_short | GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits |
title_sort | gwas4d: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits |
topic | Web Server Issue |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030885/ https://www.ncbi.nlm.nih.gov/pubmed/29771388 http://dx.doi.org/10.1093/nar/gky407 |
work_keys_str_mv | AT huangdandan gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits AT yixianfu gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits AT zhangshijie gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits AT zhengzhanye gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits AT wangpanwen gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits AT xuanchenghao gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits AT shampakchung gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits AT wangjunwen gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits AT limulinjun gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits |