Cargando…

GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits

Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitat...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Dandan, Yi, Xianfu, Zhang, Shijie, Zheng, Zhanye, Wang, Panwen, Xuan, Chenghao, Sham, Pak Chung, Wang, Junwen, Li, Mulin Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030885/
https://www.ncbi.nlm.nih.gov/pubmed/29771388
http://dx.doi.org/10.1093/nar/gky407
_version_ 1783337214722179072
author Huang, Dandan
Yi, Xianfu
Zhang, Shijie
Zheng, Zhanye
Wang, Panwen
Xuan, Chenghao
Sham, Pak Chung
Wang, Junwen
Li, Mulin Jun
author_facet Huang, Dandan
Yi, Xianfu
Zhang, Shijie
Zheng, Zhanye
Wang, Panwen
Xuan, Chenghao
Sham, Pak Chung
Wang, Junwen
Li, Mulin Jun
author_sort Huang, Dandan
collection PubMed
description Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants.
format Online
Article
Text
id pubmed-6030885
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-60308852018-07-10 GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits Huang, Dandan Yi, Xianfu Zhang, Shijie Zheng, Zhanye Wang, Panwen Xuan, Chenghao Sham, Pak Chung Wang, Junwen Li, Mulin Jun Nucleic Acids Res Web Server Issue Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants. Oxford University Press 2018-07-02 2018-05-16 /pmc/articles/PMC6030885/ /pubmed/29771388 http://dx.doi.org/10.1093/nar/gky407 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Web Server Issue
Huang, Dandan
Yi, Xianfu
Zhang, Shijie
Zheng, Zhanye
Wang, Panwen
Xuan, Chenghao
Sham, Pak Chung
Wang, Junwen
Li, Mulin Jun
GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits
title GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits
title_full GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits
title_fullStr GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits
title_full_unstemmed GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits
title_short GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits
title_sort gwas4d: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits
topic Web Server Issue
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030885/
https://www.ncbi.nlm.nih.gov/pubmed/29771388
http://dx.doi.org/10.1093/nar/gky407
work_keys_str_mv AT huangdandan gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits
AT yixianfu gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits
AT zhangshijie gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits
AT zhengzhanye gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits
AT wangpanwen gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits
AT xuanchenghao gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits
AT shampakchung gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits
AT wangjunwen gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits
AT limulinjun gwas4dmultidimensionalanalysisofcontextspecificregulatoryvariantforhumancomplexdiseasesandtraits