Cargando…
Machine learning accelerates MD-based binding pose prediction between ligands and proteins
MOTIVATION: Fast and accurate prediction of protein–ligand binding structures is indispensable for structure-based drug design and accurate estimation of binding free energy of drug candidate molecules in drug discovery. Recently, accurate pose prediction methods based on short Molecular Dynamics (M...
Autores principales: | Terayama, Kei, Iwata, Hiroaki, Araki, Mitsugu, Okuno, Yasushi, Tsuda, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030886/ https://www.ncbi.nlm.nih.gov/pubmed/29040432 http://dx.doi.org/10.1093/bioinformatics/btx638 |
Ejemplares similares
-
Exploring ligand binding pathways on proteins using hypersound-accelerated molecular dynamics
por: Araki, Mitsugu, et al.
Publicado: (2021) -
Exploring Successful Parameter Region for Coarse-Grained Simulation of Biomolecules by Bayesian Optimization and Active Learning
por: Kanada, Ryo, et al.
Publicado: (2020) -
The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction
por: Shen, Chao, et al.
Publicado: (2021) -
Classification of scanning electron microscope images of pharmaceutical excipients using deep convolutional neural networks with transfer learning
por: Iwata, Hiroaki, et al.
Publicado: (2022) -
A reinforcement learning approach for protein–ligand binding pose prediction
por: Wang, Chenran, et al.
Publicado: (2022)