Cargando…
Drug–drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths
MOTIVATION: Adverse events resulting from drug-drug interactions (DDI) pose a serious health issue. The ability to automatically extract DDIs described in the biomedical literature could further efforts for ongoing pharmacovigilance. Most of neural networks-based methods typically focus on sentence...
Autores principales: | Zhang, Yijia, Zheng, Wei, Lin, Hongfei, Wang, Jian, Yang, Zhihao, Dumontier, Michel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030919/ https://www.ncbi.nlm.nih.gov/pubmed/29077847 http://dx.doi.org/10.1093/bioinformatics/btx659 |
Ejemplares similares
-
Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text
por: Li, Zhiheng, et al.
Publicado: (2019) -
A Single Kernel-Based Approach to Extract Drug-Drug Interactions from Biomedical Literature
por: Zhang, Yijia, et al.
Publicado: (2012) -
An attention-based effective neural model for drug-drug interactions extraction
por: Zheng, Wei, et al.
Publicado: (2017) -
Shortest Paths in Multiplex Networks
por: Ghariblou, Saeed, et al.
Publicado: (2017) -
Hierarchical bi-directional attention-based RNNs for supporting document classification on protein–protein interactions affected by genetic mutations
por: Fergadis, Aris, et al.
Publicado: (2018)