Cargando…

Flow Cytometry for Rapid Enumeration and Biomass Quantification of Thraustochytrids in Coastal Seawaters

Marine fungus-like eukaryotic unicellular protists (thraustochytrids) are considered to play an important role in the marine microbial food web. However, their abundance, distribution, and relative biomass in coastal waters have not yet been examined in detail. By using a flow cytometry method (FCM)...

Descripción completa

Detalles Bibliográficos
Autores principales: Duan, Yingbo, Sen, Biswarup, Xie, Ningdong, Paterson, James S., Chen, Zixi, Wang, Guangyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031391/
https://www.ncbi.nlm.nih.gov/pubmed/29910220
http://dx.doi.org/10.1264/jsme2.ME17162
Descripción
Sumario:Marine fungus-like eukaryotic unicellular protists (thraustochytrids) are considered to play an important role in the marine microbial food web. However, their abundance, distribution, and relative biomass in coastal waters have not yet been examined in detail. By using a flow cytometry method (FCM) for the rapid enumeration of thraustochytrids in nearshore and offshore stations along the Gulf of Bohai, China, we herein expanded current knowledge on their ecological significance. The FCM method allows for the rapid detection and quantification of prokaryotic and eukaryotic cells, but is rarely applied to the enumeration of small eukaryotic protists. Epifluorescence microscopy (EpiM) has been commonly used for the direct detection and enumeration of thraustochytrids; however, this method is time-consuming and inapplicable to a large-scale analysis of complex seawater samples. There is no available FCM method to track the abundance and biomass of thraustochytrids in marine habitats. The FCM enumeration of thraustochytrids in seawater samples ranged between 400 and 4,080 cells mL(−1) with a biomass range of 8.15–83.96 μg C L(−1). The thraustochytrid biomass contributed 10.9% to 98.1% of the total biomass of the heterotrophic microbial community comprising bacterioplankton and thraustochytrids. Their overall abundance in nearshore stations was significantly different from that in offshore stations (P<0.5). The present results provide an optimized method for the rapid detection and enumeration of thraustochytrids in seawater and facilitate large-scale studies of the ecological role of thraustochytrids in the microbial food web of coastal waters.