Cargando…

Host-Specific Bacteroides Markers-Based Microbial Source Tracking in Aquaculture Areas

Various waterborne pathogens originate from human or animal feces and may cause severe gastroenteric outbreaks. Bacteroides spp. that exhibit strong host- or group-specificities are promising markers for identifying fecal sources and their origins. In the present study, 240 water samples were collec...

Descripción completa

Detalles Bibliográficos
Autores principales: Ko, Hye Young, Cho, Kyuseon, Park, SungJun, Kim, Jin Hwi, Kang, Joo-Hyon, Jeong, Yong Seok, Choi, Jong Duck, Sin, Yongsik, Lee, Cheonghoon, Ko, GwangPyo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031393/
https://www.ncbi.nlm.nih.gov/pubmed/29863059
http://dx.doi.org/10.1264/jsme2.ME17166
Descripción
Sumario:Various waterborne pathogens originate from human or animal feces and may cause severe gastroenteric outbreaks. Bacteroides spp. that exhibit strong host- or group-specificities are promising markers for identifying fecal sources and their origins. In the present study, 240 water samples were collected from two major aquaculture areas in Republic of Korea over a period of approximately 1 year, and the concentrations and occurrences of four host-specific Bacteroides markers (human, poultry, pig, and ruminant) were evaluated in the study areas. Host-specific Bacteroides markers were detected widely in the study areas, among which the poultry-specific Bacteroides marker was detected at the highest concentration (1.0–1.2 log(10) copies L(−1)). During the sampling period, high concentrations of host-specific Bacteroides markers were detected between September and December 2015. The host-specific Bacteroides marker-combined geospatial map revealed the up-to-downstream gradient of fecal contamination, as well as the effects of land-use patterns on host-specific Bacteroides marker concentrations. In contrast to traditional bacterial indicators, the human-specific Bacteroides marker correlated with human specific pathogens, such as noroviruses (r=0.337; P<0.001). The present results indicate that host-specific Bacteroides genetic markers with an advanced geospatial analysis are useful for tracking fecal sources and associated pathogens in aquaculture areas.